Volume 43 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
JIANG Hongjie, LU Wenbo, WANG Gaohui, LIU Yijia, WANG Yang. On characteristics of failure zones in mass concrete subjected to underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(10): 102202. doi: 10.11883/bzycj-2022-0415
Citation: JIANG Hongjie, LU Wenbo, WANG Gaohui, LIU Yijia, WANG Yang. On characteristics of failure zones in mass concrete subjected to underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(10): 102202. doi: 10.11883/bzycj-2022-0415

On characteristics of failure zones in mass concrete subjected to underwater contact explosion

doi: 10.11883/bzycj-2022-0415
  • Received Date: 2022-09-28
  • Rev Recd Date: 2023-09-16
  • Publish Date: 2023-10-27
  • The evaluation of failure effect on concrete under explosion is of great significance to both engineering blasting construction and anti-explosion safety of engineering structures. The key is to obtain the characteristics of failure zones of the target. Firstly, main physical processes of underwater contact explosion were analyzed. Loading characteristics of underwater contact explosion were studied with the difference between underwater contact explosion and air contact explosion compared. Then, a calculation method for range of failure zones in underwater contact explosion considering the crushing effect on target from explosion shock wave and the quasi-static effect on target from detonation products was established. The quasi-static effect was further subdivided into quasi-static compression fracturing and quasi-static tensile fracturing. Finally, the proposed method was verified with finite element numerical simulation and experimental data in literatures. The results show that the expansion of detonation products is inhibited by water compared with air contact explosion. And then the duration of explosion load and the impulse acting on the surrounding medium are increased in underwater contact explosion. Circumferential compression criterion is suggested to calculate cracked zone of concrete subjected to underwater contact explosion. And fracture zone is suggested to divide into dynamic fracturing zone, quasi-static compression fracturing zone and quasi-static tension fracturing zone for calculation. Failure range of mass concrete subjected to underwater contact explosion is well predicted by proposed calculation method. With the same explosive type and water depth, the range of fracture zone is greatly influenced by the tensile strength and compressive strength ratio of concrete. This provides a basis for both blast resistance research of engineering structures and underwater engineering blasting construction.
  • loading
  • [1]
    SHU Y Z, WANG G H, LU W B, et al. Stability assessment method of damaged concrete gravity dams subjected to penetration explosion [J]. Engineering Structures, 2022, 267: 114683. DOI: 10.1016/j.engstruct.2022.114683.
    [2]
    WANG G H, LU W B, YANG G D, et al. A state-of-the-art review on blast resistance and protection of high dams to blast loads [J]. International Journal of Impact Engineering, 2020, 139: 103529. DOI: 10.1016/j.ijimpeng.2020.103529.
    [3]
    LI Q, WANG G H, LU W B, et al. Failure modes and effect analysis of concrete gravity dams subjected to underwater contact explosion considering the hydrostatic pressure [J]. Engineering Failure Analysis, 2018, 85: 62–76. DOI: 10.1016/j.engfailanal.2017.12.008.
    [4]
    DRUKOVANYI M F, KOMIR V M, MYACHINA N I, et al. Effect of the charge diameter and type of explosive on the size of the overcrushing zone during an explosion [J]. Soviet Mining Science, 1973, 9(5): 500–506. DOI: 10.1007/BF02501378.
    [5]
    戴俊. 柱状装药爆破的岩石压碎圈与裂隙圈计算 [J]. 辽宁工程技术大学学报(自然科学版), 2001, 20(2): 144–147. DOI: 10.3969/J.ISSN.1008-0562.2001.02.005.

    DAI J. Calculation of radii of the broken and cracked areas in rock by a long charge explosion [J]. Journal of Liaoning Technical University (Natural Science), 2001, 20(2): 144–147. DOI: 10.3969/J.ISSN.1008-0562.2001.02.005.
    [6]
    DJORDJEVIC N. Two-component of blast fragmentation [C]//Proceedings of the Sixth International Symposium on Rock Fragmentation by Blasting-Fragblast. Johannesburg: South African Institute of Mining and Metallurgy, 1999: 213–219.
    [7]
    HUSTRULID W. Blasting principles for open pit mining-theoretical foundations [M]. Rotterdam: Balkema, 1999.
    [8]
    冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进 [J]. 爆炸与冲击, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.

    LENG Z D, LU W B, CHEN M, et al. Improved calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.
    [9]
    钱七虎. 岩石爆炸动力学的若干进展 [J]. 岩石力学与工程学报, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.

    QIAN Q H. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.
    [10]
    ESEN S, ONEDERRA I, BILGIN H A. Modelling the size of the crushed zone around a blasthole [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(4): 485–495. DOI: 10.1016/s1365-1609(03)00018-2.
    [11]
    FAR M S, WANG Y. Probabilistic analysis of crushed zone for rock blasting [J]. Computers and Geotechnics, 2016, 80: 290–300. DOI: 10.1016/j.compgeo.2016.08.025.
    [12]
    TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344.
    [13]
    林英松, 王莉, 丁雁生, 等. 饱和水泥试样被爆炸激波损伤破碎的尺度研究 [J]. 爆炸与冲击, 2008, 28(2): 186–192. DOI: 10.11883/1001-1455(2008)02-0186-07.

    LIN Y S, WANG L, DING Y S, et al. Experimental study of damage and fracture zone in cement sample subjected to exploding wave [J]. Explosion and Shock Waves, 2008, 28(2): 186–192. DOI: 10.11883/1001-1455(2008)02-0186-07.
    [14]
    曾惠泉, 杨秀敏, 焦云鹏, 等. 触地爆炸流体弹塑性模型数值计算 [J]. 爆炸与冲击, 1982, 2(1): 45–54.

    ZENG H Q, YANG X M, JIAO Y P, et al. The hydrodynamic elasto-plastic model calculation of the contact-burst ground shock [J]. Explosion and Shock Waves, 1982, 2(1): 45–54.
    [15]
    王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题III: 地下核爆炸诱发工程性地震效应的计算原理及应用 [J]. 岩石力学与工程学报, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.

    WANG M Y, LI J. Nonlinear mechanics problems in rock explosion and shock. Part III: the calculation principle of engineering seismic effects induced by underground nuclear explosion and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.
    [16]
    金辉, 李兵, 权琳, 等. 不同边界条件下炸药水中爆炸的能量输出结构 [J]. 爆炸与冲击, 2013, 33(3): 325–329. DOI: 10.11883/1001-1455(2013)03-0325-05.

    JIN H, LI B, QUAN L, et al. Configuration of explosive energy output in different underwater boundary conditions [J]. Explosion and Shock Waves, 2013, 33(3): 325–329. DOI: 10.11883/1001-1455(2013)03-0325-05.
    [17]
    ZHAO X H, WANG G H, LU W B, et al. Damage features of RC slabs subjected to air and underwater contact explosions [J]. Ocean Engineering, 2018, 147: 531–545. DOI: 10.1016/j.oceaneng.2017.11.007.
    [18]
    刘靖晗, 唐廷, 韦灼彬, 等. 水下接触爆炸下沉箱码头毁伤效应 [J]. 爆炸与冲击, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.

    LIU J H, TANG T, WEI Z B, et al. Damage effects of a caisson wharf subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.
    [19]
    YANG G D, FAN Y, WANG G H, et al. Blast resistance of air-backed RC slab against underwater contact explosion [J/OL]. Defence Technology, 2022(2022-11-17). https://www.sciencedirect.com/science/article/pii/S2214914722002422. DOI: 10.1016/j.dt.2022.11.004.
    [20]
    HENRYCH J. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 73–82.
    [21]
    哈努卡耶夫. 矿岩爆破物理过程 [M]. 刘殿中, 译. 北京: 冶金工业出版社, 1980: 46–53, 81–82.
    [22]
    詹发民, 姜涛, 黄雪峰. 水下爆破 [M]. 武汉: 湖北科学技术出版社, 2021: 227–230.
    [23]
    王永刚, 张远平, 王礼立. C30混凝土冲击绝热关系和Grüneisen型状态方程的实验研究 [J]. 物理学报, 2008, 57(12): 7789–7793. DOI: 10.3321/J.ISSN:1000-3290.2008.12.061.

    WANG Y G, ZHANG Y P, WANG L L. Experimental study on the shock Hugoniot relationship and the Grüneisen-type equation of state for C30 concrete [J]. Acta Physica Sinica, 2008, 57(12): 7789–7793. DOI: 10.3321/J.ISSN:1000-3290.2008.12.061.
    [24]
    王礼立, 任辉启, 虞吉林, 等. 非线性应力波传播理论的发展及应用 [J]. 固体力学学报, 2013, 34(3): 217–240. DOI: 10.3969/j.issn.0254-7805.2013.03.001.

    WANG L L, REN H Q, YU J L, et al. Development and application of the theory of nonlinear stress wave propagation [J]. Chinese Journal of Solid Mechanics, 2013, 34(3): 217–240. DOI: 10.3969/j.issn.0254-7805.2013.03.001.
    [25]
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 232–234.
    [26]
    董毓利, 谢和平, 赵鹏. 不同应变率下混凝土受压全过程的实验研究及其本构模型 [J]. 水利学报, 1997(7): 72–77. DOI: 10.13243/J.CNKI.SLXB.1997.07.013.

    DONG Y L, XIE H P, ZHAO P. Experimental study and constitutive model on concrete under compression with different strain rate [J]. Journal of Hydraulic Engineering, 1997(7): 72–77. DOI: 10.13243/J.CNKI.SLXB.1997.07.013.
    [27]
    曹扬悦也, 蒋志刚, 谭清华, 等. 基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型 [J]. 振动与冲击, 2017, 36(5): 48–53,60. DOI: 10.13465/j.cnki.jvs.2017.05.008.

    CAO Y Y Y, JIANG Z G, TAN Q H, et al. Penetration model for concrete-rock targets based on Hoek-Brown criterion [J]. Journal of Vibration and Shock, 2017, 36(5): 48–53,60. DOI: 10.13465/j.cnki.jvs.2017.05.008.
    [28]
    中华人民共和国水利部. 水工混凝土结构设计规范: SL 191—2008 [S]. 北京: 中国水利水电出版社, 2008.
    [29]
    刘增晨, 蒋利, 成莞莞, 等. 高强混凝土抗压抗拉强度的尺寸效应 [J]. 科学技术与工程, 2015, 15(30): 209–213. DOI: 10.3969/j.issn.1671-1815.2015.30.039.

    LIU Z C, JIANG L, CHENG W W, et al. The dimensional effect of compressive strength and splitting tensile strength of high strength concrete [J]. Science Technology and Engineering, 2015, 15(30): 209–213. DOI: 10.3969/j.issn.1671-1815.2015.30.039.
    [30]
    张艳红, 胡晓, 杨陈, 等. 大坝混凝土强度参数的统计分析 [J]. 水力发电学报, 2015, 34(6): 169–175.

    ZHANG Y H, HU X, YANG C, et al. Statistical analysis of dam concrete strength parameters [J]. Journal of Hydroelectric Engineering, 2015, 34(6): 169–175.
    [31]
    ROSENBERG Z. On the relation between the Hugoniot elastic limit and the yield strength of brittle materials [J]. Journal of Applied Physics, 1993, 74(1): 752–753. DOI: 10.1063/1.355247.
    [32]
    谢和平, 董毓利, 李世平. 不同围压下混凝土受压弹塑性损伤本构模型的研究 [J]. 煤炭学报, 1996, 21(3): 265–270. DOI: 10.3321/j.issn:0253-9993.1996.03.009.

    XIE H P, DONG Y L, LI S P. Study of a constitutive model of elasto-plastic damage of concrete in axial compression test under different pressures [J]. Journal of China Coal Society, 1996, 21(3): 265–270. DOI: 10.3321/j.issn:0253-9993.1996.03.009.
    [33]
    KIPP M E, CHHABILDAS L C, REINHART W D. Elastic shock response and spall strength of concrete [J]. AIP Conference Proceedings, 1998, 429(1): 557–560. DOI: 10.1063/1.55664.
    [34]
    GUO Y B, GAO G F, JING L, et al. Dynamic properties of mortar in high-strength concrete [J]. International Journal of Impact Engineering, 2022, 165: 104216. DOI: 10.1016/j.ijimpeng.2022.104216.
    [35]
    ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD-757183 [R]. Washington: Naval Intelligence Support Center, 1973: 119–120.
    [36]
    陈建华. 层状岩体水下裸露爆破的药量计算 [J]. 矿业研究与开发, 1995(3): 54–56.

    CHEN J H. The calculation of explosive weight in underwater exposed blasting of stratified rock [J]. Mining Research and Development, 1995(3): 54–56.
    [37]
    中华人民共和国水利电力部. 水工钢筋混凝土结构设计规范(试行) : SDJ 20—78 [S]. 北京: 水利电力出版社, 1979.
    [38]
    中国人民解放军总参谋部兵种部. 军用爆破教范 [M]. 北京: 解放军出版社, 1998: 206.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (226) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return