Volume 43 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LIU Zhidong, ZHAO Xiaohua, FANG Hongyuan, WANG Gaohui, SHI Mingsheng. Damage mitigation effect of polymer sacrificial cladding on reinforced concrete slabs under blast loading[J]. Explosion And Shock Waves, 2023, 43(2): 023301. doi: 10.11883/bzycj-2022-0435
Citation: LIU Zhidong, ZHAO Xiaohua, FANG Hongyuan, WANG Gaohui, SHI Mingsheng. Damage mitigation effect of polymer sacrificial cladding on reinforced concrete slabs under blast loading[J]. Explosion And Shock Waves, 2023, 43(2): 023301. doi: 10.11883/bzycj-2022-0435

Damage mitigation effect of polymer sacrificial cladding on reinforced concrete slabs under blast loading

doi: 10.11883/bzycj-2022-0435
  • Received Date: 2022-10-11
  • Rev Recd Date: 2022-11-04
  • Available Online: 2022-11-17
  • Publish Date: 2023-02-25
  • The blast resistance of sacrificial cladding has been extensively studied in the field of blast protection. As a polymer material with a cellular structure, non-water reactive foaming polyurethane also has the potential to act as a sacrificial cladding due to its good mechanical properties. In order to study the blast damage mitigation effect of polymer sacrificial cladding on reinforced concrete structures, a contact explosion test on the reinforced concrete slab with polymer sacrificial cladding was carried out, while an ordinary reinforced concrete slab was set as the control group, and the effect of polymer sacrificial cladding on the damage characteristics of the reinforced concrete slab was compared and analyzed. In addition, the SPH-FEM (coupled smooth particle hydrodynamics and finite element method) coupling model of the field explosion test was established by using AUTODYN software, and the reliability of the coupling model was verified by comparing with the test results. On this basis, the effects of explosive charge, the density, and the thickness of polymer sacrificial cladding on the damage features and energy absorption characteristics of reinforced concrete slabs with polymer sacrificial cladding were investigated through parametric sensitivity analysis. The results show that the polymer sacrificial cladding can effectively disperse the blast loads and mitigate the impact of the blast loads on the reinforced concrete slab with good protective performance under contact explosions. The polymer sacrificial cladding can maintain a high level of energy absorption even with the explosive charge increased within limits. Increasing the density and thickness of the cladding is beneficial to enhance the energy absorption ability of the polymer sacrificial cladding, while the change in thickness will cause a change in the damage mode of the protected reinforced concrete slab. The research results are helpful in providing a relevant reference for the further research and application of the new non-water reactive foaming polyurethane in the field of blast protection of engineering structures.
  • loading
  • [1]
    赵春风, 何凯城, 卢欣, 等. 弧形双钢板混凝土组合板抗爆性能数值研究 [J]. 爆炸与冲击, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205.

    ZHAO C F, HE K C, LU X, et al. Numerical study of blast resistance of curved steel-concrete-steel composite slabs [J]. Explosion and Shock Waves, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205.
    [2]
    赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.

    ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion and Shock Waves, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.
    [3]
    赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.

    ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock Waves, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.
    [4]
    WU C Q, SHEIKH H. A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding [J]. International Journal of Impact Engineering, 2013, 55: 24–33. DOI: 10.1016/j.ijimpeng.2012.11.006.
    [5]
    REBELO H B, LECOMPTE D, CISMASIU C, et al. Experimental and numerical investigation on 3D printed PLA sacrificial honeycomb cladding [J]. International Journal of Impact Engineering, 2019, 131: 162–173. DOI: 10.1016/j.ijimpeng.2019.05.013.
    [6]
    BOHARA R P, LINFORTH S, GHAZLAN A, et al. Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive [J]. Composite Structures, 2022, 280: 114907. DOI: 10.1016/j.compstruct.2021.114907.
    [7]
    范东宇, 苏彬豪, 彭辉, 等. 多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究 [J]. 力学学报, 2022, 54(6): 1630–1640. DOI: 10.6052/0459-1879-22-047.

    FAN D Y, SU B H, PENG H, et al. Research on dynamic crushing and mechanism of mitigation and energy absorption of cellular sacrificial layers [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630–1640. DOI: 10.6052/0459-1879-22-047.
    [8]
    ZHAO H L, YU H T, YUAN Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures [J]. Construction and Building Materials, 2015, 94(9): 710–718. DOI: 10.1016/j.conbuildmat.2015.07.076.
    [9]
    WANG Z Y, DU M R, FANG H Y, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression [J]. Construction and building materials, 2021, 301: 124092. DOI: 10.1016/j.conbuildmat.2021.124092.
    [10]
    FANG H Y, LI B, WANG F M, et al. The mechanical behaviour of drainage pipeline under traffic load before and after polymer grouting trenchless repairing [J]. Tunnelling and Underground Space Technology, 2018, 74(4): 185–194. DOI: 10.1016/j.tust.2018.01.018.
    [11]
    王复明, 李曼珺, 方宏远, 等. 黄河大堤高聚物防渗墙稳定性分析 [J]. 人民黄河, 2019, 41(10): 48–52,86. DOI: 10.3969/j.issn.1000-1379.2019.10.009.

    WANG F M, LI M J, FANG H Y, et al. Analysis of polymer cut-off wall of yellow river dyke [J]. Yellow River, 2019, 41(10): 48–52,86. DOI: 10.3969/j.issn.1000-1379.2019.10.009.
    [12]
    FANG H Y, SU Y J, DU X M, et al. Experimental and numerical investigation on repairing effect of polymer grouting for settlement of high-speed railway unballasted track [J]. Applied Sciences, 2019, 9(21): 4496. DOI: 10.3390/app9214496.
    [13]
    WANG Y H, LU J Y, ZHAI X M, et al. Response of energy absorbing connector with polyurethane foam and multiple pleated plates under impact loading [J]. International Journal of Impact Engineering, 2019, 133: 103356. DOI: 10.1016/j.ijimpeng.2019.103356.
    [14]
    WANG Y H, ZHANG B Y, LU J Y, et al. Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates [J]. Engineering Structures, 2020, 211: 110404. DOI: 10.1016/j.engstruct.2020.110404.
    [15]
    JAMIL A, GUAN Z W, CANTWELL W J, et al. Blast response of aluminium/thermoplastic polyurethane sandwich panels: experimental work and numerical analysis [J]. International Journal of Impact Engineering, 2019, 127: 31–40. DOI: 10.1016/j.ijimpeng.2019.01.003.
    [16]
    张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析 [J]. 爆炸与冲击, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.

    ZHANG Y. Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure [J]. Explosion and Shock Waves, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.
    [17]
    杨广栋, 王高辉, 李麒, 等. 爆炸冲击下水底隧道的动态响应及毁伤模式研究 [J]. 振动与冲击, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.

    YANG G D, WANG G H, LI Q, et al. Dynamic response and damage patterns of underwater tunnel subjected to blast loads [J]. Journal of Vibration and Shock, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.
    [18]
    王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.

    WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
    [19]
    甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.

    GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(29)  / Tables(6)

    Article Metrics

    Article views (813) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return