Volume 43 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
CHEN Sheng, NING Ye, HE Meng, QI Chang, WANG Yalei, YAN Xingqing, YU Jianliang. The upper explosion limit of C3H8/C2H4 mixtures in air at high temperatures and pressures[J]. Explosion And Shock Waves, 2023, 43(6): 065401. doi: 10.11883/bzycj-2022-0475
Citation: CHEN Sheng, NING Ye, HE Meng, QI Chang, WANG Yalei, YAN Xingqing, YU Jianliang. The upper explosion limit of C3H8/C2H4 mixtures in air at high temperatures and pressures[J]. Explosion And Shock Waves, 2023, 43(6): 065401. doi: 10.11883/bzycj-2022-0475

The upper explosion limit of C3H8/C2H4 mixtures in air at high temperatures and pressures

doi: 10.11883/bzycj-2022-0475
  • Received Date: 2022-10-31
  • Rev Recd Date: 2023-03-16
  • Available Online: 2023-04-11
  • Publish Date: 2023-06-05
  • It is necessary to understand the upper explosion limits of C3H8/C2H4 mixtures to prevent the potential explosive risks of flammable gas mixtures in the process of high temperatures and pressures. An experimental device of a 20 L spherical vessel with high pressure placed in a high-temperature oven was set up to test the upper explosion limits of C3H8/C2H4 mixtures at high pressure and temperature. The partial pressure method was used to prepare the mixtures of C3H8, C2H4, and air with a certain concentration. A pressure rise amplitude of 5% was adopted to judge whether the explosion occurred. The initial temperature ranged from 20 ℃ to 200 ℃, and the initial pressure ranged from 0.1 MPa to 1.5 MPa in the experiments. The effects of temperature, pressure, and volume fraction of C2H4 on the upper explosion limit of C3H8/C2H4 mixtures were analyzed. The results show that the upper explosion limit of C3H8/C2H4 mixtures increases with the rises of temperature and pressure, but the increase rate of the upper explosion limit decreases significantly with the increase of C2H4 concentration when the initial pressure is higher than 0.3 MPa. The amplitude increase and rate of the upper explosion limit with C2H4 at high temperatures and pressures are higher than those at normal conditions. The influences of temperature and pressure on the upper explosion limit are much greater than the sum of the two effects alone, indicating that the C3H8/C2H4 mixtures have a higher explosion risk under the synergistic effect of high temperature and pressure, and it will be further enhanced with the increase of C2H4 concentration. The influence of the temperature, pressure, and their synergistic effects on the upper explosion limit of C3H8/C2H4 mixtures in different proportions are comprehensively analyzed, and the corresponding functional relations of the temperature-upper explosion limit, pressure-upper explosion limit, and temperature-pressure-upper explosion limit in different volume fractions of C2H4 are summarized by the non-linear regression of surface.
  • loading
  • [1]
    BOUNACEUR R, GLAUDE P A, SIRJEAN B, et al. Prediction of flammability limits of gas mixtures containing inert gases under variable temperature and pressure conditions [C] // ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Charlotte, France, 2017.
    [2]
    LIAW H J, CHEN K Y. A model for predicting temperature effect on flammability limits [J]. Fuel, 2016, 178: 179–187. DOI: 10.1016/j.fuel.2016.03.034.
    [3]
    VAN DEN SCHOOR F, HERMANNS R T E, VAN OIJEN J A, et al. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures [J]. Journal of Hazardous Materials, 2008, 150(3): 573–581. DOI: 10.1016/j.jhazmat.2007.05.006.
    [4]
    VAN DEN SCHOOR F, VERPLAETSEN F. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures [J]. Journal of Hazardous Materials, 2006, 128(1): 1–9. DOI: 10.1016/j.jhazmat.2005.06.043.
    [5]
    李刚, 李玉峰, 苑春苗. 高温和高压下CBM的爆炸极限 [J]. 东北大学学报(自然科学版), 2012, 33(4): 580–583. DOI: 10.12068/j.issn.1005-3026.2012.04.030.

    LI G, LI Y F, YUAN C M. Explosion limits of CBM at elevated pressure and temperature [J]. Journal of Northeastern University Natural Science, 2012, 33(4): 580–583. DOI: 10.12068/j.issn.1005-3026.2012.04.030.
    [6]
    HUANG L, LI Z, WANG Y, et al. Experimental assessment on the explosion pressure of CH4-air mixtures at flammability limits under high pressure and temperature conditions [J]. Fuel, 2021, 299: 120868. DOI: 10.1016/j.fuel.2021.120868.
    [7]
    WANG Y L, QI C, NING Y, et al. Experimental determination of the lower flammability limit and limiting oxygen concentration of propanal/air mixtures under elevated temperatures and pressures [J]. Fuel, 2022, 326: 124882. DOI: 10.1016/j.fuel.2022.124882.
    [8]
    WANG Y L, YU J L, YAN X Q, et al. Study on the explosion characteristics of propanal/air mixtures at elevated pressures [J]. Fuel, 2022, 328: 125288. DOI: 10.1016/j.fuel.2022.125288.
    [9]
    YU X Z, YU J L, JI W T, et al. A research on flammability limits of the refrigerant HCFC-22/air mixtures at elevated pressures [J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 89–93. DOI: 10.1016/j.jlp.2019.05.022.
    [10]
    LUO Z M, SU B, WANG T, et al. Effects of propane on the flammability limits and chemical kinetics of methane-air explosions [J]. Combustion Science and Technology, 2020, 192(9): 1785–1801. DOI: 10.1080/00102202.2019.1625041.
    [11]
    TONG M, WU G, HAO J, et al. Explosion limits for combustible gases [J]. Mining Science and Technology, 2009, 19(2): 182–184. DOI: 10.3969/j.issn.2095-2686.2009.02.009.
    [12]
    宁也, 何萌, 祁畅, 等. 三元可燃混合气体爆炸极限实验及预测方法 [J]. 爆炸与冲击, 2023, 43(4): 045401. DOI: 10.11883/bzycj-2022-0120.

    NING Y, HE M, QI C, et al. Experiment and methods of prediction on the explosion limit of the ternary flammable gas mixture [J]. Explosion and Shock Waves, 2023, 43(4): 045401. DOI: 10.11883/bzycj-2022-0120.
    [13]
    CUI G, YANG C, LI Z L, et al. Experimental study and theoretical calculation of flammability limits of methane/air mixture at elevated temperatures and pressures [J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 252–258. DOI: 10.1016/j.jlp.2016.02.016.
    [14]
    MASHUGA C V, CROWL D A. Flammability zone prediction using calculated adiabatic flame temperatures [J]. Process Safety Progress, 1999, 18(3): 127–134. DOI: 10.1002/prs.680180303.
    [15]
    HU X, YU Q, SUN N, et al. Experimental study of flammability limits of oxy-methane mixture and calculation based on thermal theory [J]. International Journal of Hydrogen Energy, 2014, 39(17): 9527–9533. DOI: 10.1016/j.ijhydene.2014.03.202.
    [16]
    GIURCAN V, RAZUS D, MITU M, et al. Prediction of flammability limits of fuel-air and fuel-air-inert mixtures from explosivity parameters in closed vessels [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 65–71. DOI: 10.1016/j.jlp.2015.01.025.
    [17]
    QI C, WANG Y L, NING Y, et al. Flammability limits of combustible gases at elevated temperatures and pressures: recent advances and future perspectives [J]. Energy and Fuels, 2022, 36(21): 12896–12916. DOI: 10.1021/acs.energyfuels.2c02567.
    [18]
    LIU X, ZHANG Q. Influence of initial pressure and temperature on flammability limits of hydrogen-air [J]. International Journal of Hydrogen Energy, 2014, 39(12): 6774–6782. DOI: 10.1016/j.ijhydene.2014.02.001.
    [19]
    YU X Z, YAN X Q, JI W T, et al. Effect of super-ambient conditions on the upper explosion limit of ethane/oxygen and ethylene/oxygen mixtures [J]. Journal of Loss Prevention in the Process Industries, 2019, 59: 100–105. DOI: 10.1016/j.jlp.2019.03.009.
    [20]
    喻健良, 姚福桐, 于小哲, 等. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究 [J]. 爆炸与冲击, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.

    YU J L, YAO F T, YU X Z, et al. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen [J]. Explosion and Shock Waves, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.
    [21]
    张永刚, 杜志国, 张利军, 等. 乙烷丙烷裂解研究 [J]. 乙烯工业, 2018, 30(2): 6–7. DOI: 10.3969/j.issn.1671-7120.2018.02.002.

    ZHANG Y G, DU Z G, ZHANG L J, et al. Study on pyrolysis of ethane and propane [J]. Ethylene Industry, 2018, 30(2): 6–7. DOI: 10.3969/j.issn.1671-7120.2018.02.002.
    [22]
    Determination of the explosion limits and the limiting oxygen concentration (LOC) for flammable gases and vapours: BS EN 1839—2017 [S]. Brussels: European Committee for Standardization, 2017.
    [23]
    空气中可燃气体爆炸极限测定方法: GB/T 12474—2008 [S]. 天津: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2008.
    [24]
    李法社, 王华. 高等燃烧学 [M]. 北京: 科学出版社, 2016: 68.
    [25]
    沈晓波. 密闭空间内典型可燃气体层流预混火焰传播动力学及其化学反应机理研究 [D]. 合肥: 中国科学技术大学, 2014: 73–74.

    SHEN X B. Study of laminar premixed flame propagating in confined spaces and chemical kinetic mechanisms for typical combustible gases [D]. Heifei, Anhui, China: University of Science and Technology of China, 2014: 73–74.
    [26]
    BYCHKOV V V, LIBERMAN M A. Dynamics and stability of premixed flames [J]. Physics Reports-Review Section of Physics Letters, 2000, 325(4/5): 115–237. DOI: 10.1016/s0370-1573(99)00081-2.
    [27]
    WANG T, LUO Z M, WEN H, et al. The explosion enhancement of methane-air mixtures by ethylene in a confined chamber [J]. Energy, 2021, 214: 119042. DOI: 10.1016/j.energy.2020.119042.
    [28]
    DAVIS S G, LAW C K. Determination of and fuel structure effects on laminar flame speeds of C-1 to C-8 hydrocarbons [J]. Combustion Science and Technology, 1998, 140(1): 427–449. DOI: 10.1080/00102209808915781.
    [29]
    KONDO S, TAKIZAWA K, TAKAHASHI A, et al. Extended Le Chatelier’s formula for carbon dioxide dilution effect on flammability limits [J]. Journal of Hazardous Materials, 2006, 138(1): 1–8. DOI: 10.1016/j.jhazmat.2006.05.035.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (285) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return