Citation: | LIU Xiyan, YUAN Xulong, LUO Kai, QI Xiaobin, LU Na. Experimental study on high-velocity oblique water entry ofa trans-media vehicle with tail-skirt[J]. Explosion And Shock Waves, 2023, 43(11): 113301. doi: 10.11883/bzycj-2022-0509 |
[1] |
LI D J, LI F J, SHI Y Z, et al. A novel hydrodynamic layout of front vertical rudders for maneuvering underwater supercavitating vehicles [J]. Ocean Engineering, 2020, 215: 107894. DOI: 10.1016/j.oceaneng.2020.107894.
|
[2] |
栗夫园, 党建军, 张宇文. 带锥形空化器超空泡航行体的空泡与力学特性 [J]. 江苏大学学报 (自然科学版), 2017, 38(2): 161–167. DOI: 10.3969/j.issn.1671-7775.2017.02.007.
LI F Y, DANG J J, ZHANG Y W. Cavity and hydrodynamic features of supercavitating vehicle with conical cavitator [J]. Journal of Jiangsu University (Natural Science Edition), 2017, 38(2): 161–167. DOI: 10.3969/j.issn.1671-7775.2017.02.007.
|
[3] |
马庆鹏, 何春涛, 王聪, 等. 球体垂直入水空泡实验研究 [J]. 爆炸与冲击, 2014, 34(2): 174–180. DOI: 10.11883/1001-1455(2014)02-0174-07.
MA Q P, HE C T, WANG C, et al. Experimental investigation on vertical water-entry cavity of sphere [J]. Explosion and Shock Waves, 2014, 34(2): 174–180. DOI: 10.11883/1001-1455(2014)02-0174-07.
|
[4] |
王恒, 孙铁志, 路中磊, 等. 球体入水空泡演变和运动特性影响试验研究 [J]. 爆炸与冲击, 2019, 39(12): 123901. DOI: 10.11883/bzycj-2018-0415.
WANG H, SUN T Z, LU Z L, et al. Experimental study on the cavity evolution and motion characteristics of spheres into water [J]. Explosion and Shock Waves, 2019, 39(12): 123901. DOI: 10.11883/bzycj-2018-0415.
|
[5] |
黄振贵, 王瑞琦, 陈志华, 等. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性 [J]. 爆炸与冲击, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
HUANG Z G, WANG R Q, CHEN Z H, et al. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities [J]. Explosion and Shock Waves, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
|
[6] |
邱海强, 袁绪龙, 王亚东, 等. 回转体高速垂直入水冲击载荷和空泡形态仿真 [J]. 鱼雷技术, 2013, 21(3): 161–164. DOI: 10.3969/j.issn.1673-1948.2013.03.001.
QIU H Q, YUAN X L, WANG Y D, et al. Simulation on impact load and cavity shape in high speed vertical water entry for an axisymmetric body [J]. Torpedo Technology, 2013, 21(3): 161–164. DOI: 10.3969/j.issn.1673-1948.2013.03.001.
|
[7] |
张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigation on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
|
[8] |
郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
GUO Z T, ZHANG W, GUO Z, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectile [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
|
[9] |
施红辉, 胡青青, 陈波, 等. 钝体倾斜和垂直冲击入水时引起的超空泡流动特性实验研究 [J]. 爆炸与冲击, 2015, 35(5): 617–627. DOI: 10.11883/1001-1455(2015)05-0617-08.
SHI H H, HU Q Q, CHEN B, et al. Experimental study of supercavitating flows induced by oblique and vertical water entry of blunt bodies [J]. Explosion and Shock Waves, 2015, 35(5): 617–627. DOI: 10.11883/1001-1455(2015)05-0617-08.
|
[10] |
罗驭川, 黄振贵, 高建国, 等. 截锥体头型弹丸低速倾斜入水实验研究 [J]. 爆炸与冲击, 2019, 39(11): 113902. DOI: 10.11883/bzycj-2018-0498.
LUO Y C, HUANG Z G, GAO J G, et al. Experiment research of low-speed oblique water-entry of truncated cone-shaped projectile [J]. Explosion and Shock Waves, 2019, 39(11): 113902. DOI: 10.11883/bzycj-2018-0498.
|
[11] |
侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究 [J]. 兵工学报, 2020, 41(2): 332–341. DOI: 10.3969/j.issn.1000-1093.2020.02.015.
HOU Y, HUANG Z G, GUO Z Q, et al. Experimental investigation on shallow-angle oblique water-entry of a high-speed supercavitating projectile [J]. Acta Armamentarii, 2020, 41(2): 332–341. DOI: 10.3969/j.issn.1000-1093.2020.02.015.
|
[12] |
陈晨. 小型运动体亚/跨声速入水多相流动特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019: 36–47.
CHEN C. Multiphase flow characteristics of subsonic and transonic water-entry for small moving body [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2019: 36–47.
|
[13] |
陈诚, 袁绪龙, 邢晓琳, 等. 预置舵角下超空泡航行体倾斜入水弹道特性研究 [J]. 兵工学报, 2018, 39(9): 1780–1785. DOI: 10.3969/j.issn.1000-1093.2018.09.015.
CHEN C, YUAN X L, XING X L, et al. Research on the trajectory characteristics of supercavitating vehicle obliquely entering into water at preset rudder angle [J]. Acta Armamentarii, 2018, 39(9): 1780–1785. DOI: 10.3969/j.issn.1000-1093.2018.09.015.
|
[14] |
刘如石, 郭则庆, 张辉. 尾部形状对超空泡射弹尾拍运动影响的数值研究 [J]. 兵工学报, 2023, 44(10): 2984–2994. DOI: 10.12382/bgxb.2022.0689.
LIU R S, GUO Z Q, ZHANG H. Numerical simulation on the influence of tail shapes on the tail-slap of supercavitating projectiles [J]. Acta Armamentarii, 2023, 44(10): 2984–2994. DOI: 10.12382/bgxb. 2022.0689.
|
[15] |
张衡. 尾型对超空化航行器水动力特性的影响研究 [D]. 西安: 西北工业大学, 2015.
ZHANG H. Stern hydrodynamic characteristics of supercavitation vehicle research [D]. Xi’an, Shaanxi, China: Northwestern Polytechnology University, 2015.
|
[16] |
王科燕, 邓飞, 张衡, 等. 超空泡航行器扩张尾裙流体动力特性试验研究 [J]. 西安交通大学学报, 2016, 50(1): 53–58. DOI: 10.7652/xjtuxb201601009.
WANG K Y, DENG F, ZHANG H, et al. Experimental research on hydrodynamic characteristics of supercavitating vehicle expansion sterns [J]. Journal of Xi’an Jiaotong University, 2016, 50(1): 53–58. DOI: 10.7652/xjtuxb201601009.
|
[17] |
袁绪龙, 张宇文, 刘乐华. 空泡外形测量与分析方法研究 [J]. 实验力学, 2006, 21(2): 215–219. DOI: 10.3969/j.issn.1001-4888.2006.02.016.
YUAN X L, ZHANG Y W, LIU L H. On methods of cavity profile measurement and analysis [J]. Journal of Experimental Mechanics, 2006, 21(2): 215–219. DOI: 10.3969/j.issn.1001-4888.2006.02.016.
|
[18] |
刘喜燕, 袁绪龙, 罗凯, 等. 预置舵角对跨介质航行体入水尾拍运动影响试验 [J]. 兵工学报, 2023, 44(6): 1632–1642. DOI: 10.12382/bgxb.2022.1117.
LIU X Y, YUAN X L, LUO K, et al. Experiment on the influence of preset rudder angle on the tail-slapping motion of a trans-media vehicle during water entry [J]. Acta Armamentarii, 2023, 44(6): 1632–1642. DOI: 10.12382/bgxb.2022.1117.
|
[19] |
赵成功, 王聪, 魏英杰, 等. 细长体水下运动空化流场及弹道特性实验 [J]. 爆炸与冲击, 2017, 37(3): 439–446. DOI: 10.11883/1001-1455(2017)03-0439-08.
ZHAO C G, WANG C, WEI Y J, et al. Experiment of cavitation and ballistic characteristics of slender body under movement [J]. Explosion and Shock Waves, 2017, 37(3): 439–446. DOI: 10.11883/1001-1455(2017)03-0439-08.
|
[20] |
陈诚, 袁绪龙, 党建军, 等. 超空泡航行器20°角倾斜入水冲击载荷特性试验研究 [J]. 兵工学报, 2018, 39(6): 1159–1164. DOI: 10.3969/j.issn.1000-1093.2018.06.016.
CHEN C, YUAN X L, DANG J J, et al. Experimental investigation into impact load during oblique water-entry of a supercavitating vehicle at 20° [J]. Acta Armamentarii, 2018, 39(6): 1159–1164. DOI: 10.3969/j.issn.1000-1093.2018.06.016.
|
[21] |
刘富强, 罗凯, 梁红阁, 等. 回转体滑水航行流体动力特性研究 [J]. 西北工业大学学报, 2021, 39(1): 101–110. DOI: 10.3969/j.issn.1000-2758.2021.01.013.
LIU F Q, LUO K, LIANG H G, et al. Reasearch on hydrodynamic characteristics of cylinder planning [J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 101–110. DOI: 10.3969/j.issn.1000-2758.2021.01.013.
|
[22] |
刘喜燕, 罗凯, 袁绪龙, 等. 扩张尾裙对跨介质航行器高速入水转平弹道特性影响 [J]. 力学学报, 2023, 55(2): 343–354. DOI: 10.6052/0459-1879-22-427.
LIU X Y, LUO K, YUAN X L, et al. Influence of expansion sterns of the flatting trajectory characteristics of a trans-media vehicle during high speed water entry [J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 343–354. DOI: 10.6052/0459-1879-22-427.
|
[23] |
陈诚. 超空泡航行器尾拍作用机理与动力学建模 [D]. 西安: 西北工业大学, 2019.
CHEN C. Investigation of the mechanism of tail slapping and dynamic modeling of supercavitating vehicles [D]. Xi’an, Shaanxi, China: Northwestern Polytechnical University, 2019.
|
[24] |
时素果, 杨晓光, 王亚东, 等. 细长体高速入水过程压力特性试验研究 [J]. 应用力学学报, 2018, 35(2): 223–227, 445. DOI: 10.11776/cjam.35.02.A009.
SHI S G, YANG X G, WANG Y D, et al. Experimental study on the pressure characteristic of high-speed slender body water entry [J]. Chinese Journal of Applied Mechanics, 2018, 35(2): 223–227, 445. DOI: 10.11776/cjam.35.02.A009.
|
[25] |
赵成功. 高速射弹非定常运动多相流场与弹道特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017: 95–99.
ZHAO C G. Research on multiphase flow and trajectory characteristics of unsteady movement of high speed projectile [D]. Harbin, Heilongjiang, China, Harbin Institute of Technology, 2017: 95–99.
|