Citation: | ZHU Qing, LI Shutao, CHEN Yeqing, MA Shang. Preliminary theoretical study on the rebound effect of projectiles penetrating ultra-high performance concrete targets[J]. Explosion And Shock Waves, 2023, 43(9): 091405. doi: 10.11883/bzycj-2022-0513 |
[1] |
YU R, SPIESZ P, BROUWERS H J H. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) [J]. Cement and Concrete Research, 2014, 56: 29–39. DOI: 10.1016/j.cemconres.2013.11.002.
|
[2] |
戎志丹, 孙伟. 粗集料对超高性能水泥基材料动态力学性能的影响 [J]. 爆炸与冲击, 2009, 29(4): 361–366. DOI: 10.11883/1001-1455(2009)04-0361-06.
RONG Z D, SUN W. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites [J]. Explosion and Shock Waves, 2009, 29(4): 361–366. DOI: 10.11883/1001-1455(2009)04-0361-06.
|
[3] |
张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真 [J]. 工程力学, 2018, 35(7): 167–175, 186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.
ZHANG W H, ZHANG Y S, CHEN Z Y. Penetration test and numerical simulation of ultral-high performance concrete with a scaled earth penetrator [J]. Engineering Mechanics, 2018, 35(7): 167–175, 186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.
|
[4] |
ZHANG W H, ZHANG Y S, ZHANG G R. Static, dynamic mechanical properties and microstructure characteristics of ultra-high performance cementitious composites [J]. Science and Engineering of Composite Materials, 2012, 19(3): 237–245. DOI: 10.1515/secm-2011-0136.
|
[5] |
任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.
|
[6] |
程月华, 吴昊, 谭可可, 等. 装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053302. DOI: 10.11883/bzycj-2021-0278.
CHENG Y H, WU H, TAN K K, et al. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite target [J]. Explosion and Shock Waves, 2022, 42(5): 053302. DOI: 10.11883/bzycj-2021-0278.
|
[7] |
隋树元, 王树山. 终点效应学 [M]. 北京: 国防工业出版社, 2000: 7.
|
[8] |
FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
|
[9] |
FORRESTAL M J, LUK V K, BRAR N S. Perforation of aluminum armor plates with conical-nose projectiles [J]. Mechanics of Materials, 1990, 10(1/2): 97–105. DOI: 10.1016/0167-6636(90)90020-G.
|
[10] |
FORRESTAL M J, BRAR N S, LUK V K. Penetration of strain-hardening targets with rigid spherical-nose rods [J]. Journal of Applied Mechanics, 1991, 58(1): 7–10. DOI: 10.1115/1.2897183.
|
[11] |
陈小伟. 穿甲/侵彻力学的理论建模与分析 [M]. 北京: 科学出版社, 2019: 9.
|
[12] |
CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
|
[13] |
BATRA R C, WRIGHT T W. Steady state penetration of rigid perfectly plastic targets [J]. International Journal of Engineering Science, 1986, 24(1): 41–54. DOI: 10.1016/0020-7225(86)90147-3.
|
[14] |
FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
|
[15] |
FORRESTAL M J, WARREN T L. Penetration equations for ogive-nose rods into aluminum targets [J]. International Journal of Impact Engineering, 2008, 35(8): 727–730. DOI: 10.1016/j.ijimpeng.2007.11.002.
|
[16] |
FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584–1594. DOI: 10.1016/j.ijimpeng.2005.01.012.
|
[17] |
ROSENBERG Z, DEKEL E. The penetration of rigid long rods-revisited [J]. International Journal of Impact Engineering, 2009, 36(4): 551–564. DOI: 10.1016/j.ijimpeng.2008.06.001.
|
[18] |
陈小伟, 李继承. 刚性弹侵彻深度和阻力的比较分析 [J]. 爆炸与冲击, 2009, 29(6): 584–589. DOI: 10.11883/1001-1455(2009)06-0584-06.
CHEN X W, LI J C. Analysis of penetration depth and resistive force in the deep penetration of a rigid projectile [J]. Explosion and Shock Waves, 2009, 29(6): 584–589. DOI: 10.11883/1001-1455(2009)06-0584-06.
|
[19] |
FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
|
[20] |
CHEN X W. Dynamics of metallic and reinforced concrete targets subjected to projectile impact [D]. Singapore: Nanyang Technological University, 2003.
|
[21] |
ROSENBERG Z, VAYIG Y, MALKA-MARKOVITZ A. The scaling issue in the penetration of concrete targets by rigid projectiles: revisited [J]. International Journal of Impact Engineering, 2020, 140: 103561. DOI: 10.1016/j.ijimpeng.2020.103561.
|
[22] |
ROSENBERG Z, VAYIG Y, MALKA-MARKOVITZ A, et al. More on the perforation of concrete slabs by rigid projectiles [J]. International Journal of Impact Engineering, 2022, 162: 104138. DOI: 10.1016/j.ijimpeng.2021.104138.
|
[23] |
余同希, 邱信明. 冲击动力学 [M]. 北京: 清华大学出版社, 2011.
|
[24] |
ZHANG F L, SHEDBALE A S, ZHONG R, et al. Ultra-high performance concrete subjected to high-velocity projectile impact: implementation of K&C model with consideration of failure surfaces and dynamic increase factors [J]. International Journal of Impact Engineering, 2021, 155: 103907. DOI: 10.1016/j.ijimpeng.2021.103907.
|
[1] | WANG Wu, YANG Jun, WANG Anbao, LI Shengjie. Resistance equation of projectile penetrating into reinforced concrete shield[J]. Explosion And Shock Waves, 2025, 45(3): 033301. doi: 10.11883/bzycj-2024-0217 |
[2] | CHENG Yuehua, WU Hao, CEN Guohua, ZHANG Yu. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads[J]. Explosion And Shock Waves, 2025, 45(1): 013301. doi: 10.11883/bzycj-2024-0061 |
[3] | NIE Xiaodong, WU Xiangyun, LONG Zhilin, YI Zhi, JI Nan, GUO Ruiqi. Research on penetration depth of projectiles into ultra-high performance concrete targets[J]. Explosion And Shock Waves, 2024, 44(2): 023302. doi: 10.11883/bzycj-2022-0282 |
[4] | WANG Mafa, LI Junling, LIU Sen. The influence of density gradient of driving gas on projectile launching velocity[J]. Explosion And Shock Waves, 2023, 43(4): 042202. doi: 10.11883/bzycj-2022-0209 |
[5] | MA Sizhou, LIU Kewei, YANG Jiacai, LI Xudong, GUO Tengfei. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress[J]. Explosion And Shock Waves, 2023, 43(10): 105201. doi: 10.11883/bzycj-2023-0151 |
[6] | WANG Cunhong, CAO Yuwu, CHEN Jin, KONG Lin, SUN Xingyun. Research progress in mechanical behaviors of metallic energetic materials[J]. Explosion And Shock Waves, 2023, 43(7): 071101. doi: 10.11883/bzycj-2022-0251 |
[7] | SU Qiong, CHENG Yuehua, WU Hao. Flexural damage assessment for UHPC panels under blast loadings[J]. Explosion And Shock Waves, 2023, 43(12): 125103. doi: 10.11883/bzycj-2023-0160 |
[8] | LI Kewu, HU Qiushi, ZHENG Xianxu, LI Tao, FU Hua, TANG Wei. A theoretical model of PBXs’ tensile strength based on meso-structure parameters[J]. Explosion And Shock Waves, 2023, 43(1): 013106. doi: 10.11883/bzycj-2021-0514 |
[9] | SONG Shuai, DU Chuang, LI Yanyan. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete[J]. Explosion And Shock Waves, 2023, 43(5): 053102. doi: 10.11883/bzycj-2022-0343 |
[10] | LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294 |
[11] | CHEN Ya, TAN Chao, GUO Yazhou. Comparative study of numerical simulations of projectile penetration into metal targets[J]. Explosion And Shock Waves, 2022, 42(4): 044201. doi: 10.11883/bzycj-2021-0125 |
[12] | CHENG Yuehua, WU Hao, TAN Keke, JIANG Pengfei, ZHANG Dong, FANG Qin. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets[J]. Explosion And Shock Waves, 2022, 42(5): 053302. doi: 10.11883/bzycj-2021-0278 |
[13] | WEI Jiuqi, LI Lei, WANG Shihe, ZHANG Chunxiao, CAO Shaohua, GAO Jie. Experimental study on local damage effect of ultra-high performance concrete slabs under contact explosion[J]. Explosion And Shock Waves, 2022, 42(4): 042201. doi: 10.11883/bzycj-2021-0174 |
[14] | WANG Yinan, YAO Xiongliang, WANG Zhi, YANG Nana. Different failure modes during the high-velocity penetration on the ship plate structure through material point method[J]. Explosion And Shock Waves, 2021, 41(10): 103301. doi: 10.11883/bzycj-2020-0134 |
[15] | CHEN Beibei, ZHANG Xianfeng, DENG Jiajie, ZHANG Jian, BAO Kuo, TAN Mengting. Residual penetration depth of a projectile into YAG transparent ceramic/glass[J]. Explosion And Shock Waves, 2020, 40(8): 083301. doi: 10.11883/bzycj-2019-0372 |
[16] | PENG Yong, LU Fangyun, FANG Qin, WU Hao, LI Xiangyu. Analyses of the size effect for projectile penetrations into concrete targets[J]. Explosion And Shock Waves, 2019, 39(11): 113301. doi: 10.11883/bzycj-2018-0402 |
[17] | DUAN Zhuoping, LI Shurui, MA Zhaofang, OU Zhuocheng, HUANG Fenglei. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets[J]. Explosion And Shock Waves, 2019, 39(6): 063302. doi: 10.11883/bzycj-2018-0411 |
[18] | Xu Xingchun, Gao Xinbao, Li Tianpeng, Zhang Junkun. Theoretical model and experiment of radius variation of initial smoke cloud[J]. Explosion And Shock Waves, 2016, 36(2): 183-188. doi: 10.11883/1001-1455(2016)02-0183-06 |
[19] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[20] | LI Hai-tao, ZHU Xi, WANG Lu, ZHANG Zhen-hua. Asimplifiedtheorymodelforbulkmovementofship-likebeams subjectedtosphericalshockwaves[J]. Explosion And Shock Waves, 2010, 30(1): 85-90. doi: 10.11883/1001-1455(2010)01-0085-06 |