Citation: | WANG Zhi, CHANG Lijun, HUANG Xingyuan, CAI Zhihua. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments[J]. Explosion And Shock Waves, 2023, 43(6): 063202. doi: 10.11883/bzycj-2022-0515 |
[1] |
CERNAK I, SAVIC J, IGNJATOVIC D, et al. Blast injury from explosive munitions [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1999, 47(1): 96–103. DOI: 10.1097/00005373-199907000-00021.
|
[2] |
OWENS B D, KRAGH JR J F, WENKE J C, et al. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2008, 64(2): 295–299. DOI: 10.1097/TA.0b013e318163b875.
|
[3] |
NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. DOI: 10.1016/j.ijimpeng.2009.02.008.
|
[4] |
LEPPÄNEN J. Experiments and numerical analyses of blast and fragment impacts on concrete [J]. International Journal of Impact Engineering, 2005, 31(7): 843–860. DOI: 10.1016/j.ijimpeng.2004.04.012.
|
[5] |
KONG X S, WU W G, LI J, et al. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings [J]. International Journal of Impact Engineering, 2014, 65: 146–162. DOI: 10.1016/j.ijimpeng.2013.11.009.
|
[6] |
CHU D Y, WANG Y G, YANG S L, et al. Analysis and design for the comprehensive ballistic and blast resistance of polyurea-coated steel plate [J]. Defence Technology, 2023, 19: 35–51. DOI: 10.1016/j.dt.2021.11.010.
|
[7] |
崔小杰, 张孙嘉, 张国伟. 基于AUTODYN的复合防护结构数值模拟 [J]. 爆破器材, 2019, 48(1): 52–57. DOI: 10.3969/j.issn.1001-8352.2019.01.010.
CUI X J, ZHANG S J, ZHANG G W. Numerical simulation of composite protective structure based on AUTODYN [J]. Explosive Materials, 2019, 48(1): 52–57. DOI: 10.3969/j.issn.1001-8352.2019.01.010.
|
[8] |
彭佳, 刘春美, 张会锁, 等. 柔性防护结构对爆炸冲击波衰减作用数值模拟 [J]. 科学技术与工程, 2014, 14(31): 220–224, 230. DOI: 10.3969/j.issn.1671-1815.2014.31.041.
PENG J, LIU C M, ZHANG H S, et al. Numerical simulation on flexible protection structure attenuation to blast wave [J]. Science Technology and Engineering, 2014, 14(31): 220–224, 230. DOI: 10.3969/j.issn.1671-1815.2014.31.041.
|
[9] |
袁天, 孔祥韶, 吴卫国. 钢板/凯夫拉层合结构爆炸响应数值分析 [J]. 中国舰船研究, 2016, 11(5): 84–90. DOI: 10.3969/j.issn.1673-3185.2016.05.013.
YUAN T, KONG X S, WU W G. Numerical simulation of steel/Kevlar laminated structures under explosive load [J]. Chinese Journal of Ship Research, 2016, 11(5): 84–90. DOI: 10.3969/j.issn.1673-3185.2016.05.013.
|
[10] |
徐斌, 王成, 臧立伟, 等. 爆炸冲击波与防弹衣相互作用的数值模拟 [J]. 北京理工大学学报, 2019, 39(2): 131–134. DOI: 10.15918/j.tbit1001-0645.2019.02.004.
XU B, WANG C, ZANG L W, et al. Numerical simulation on the impact of explosion shock wave on bullet-proof vest [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 131–134. DOI: 10.15918/j.tbit1001-0645.2019.02.004.
|
[11] |
邵先锋, 赵捍东, 朱福林, 等. 一种新型柔性复合防护结构的数值模拟 [J]. 兵器装备工程学报, 2017, 38(6): 142–145. DOI: 10.11809/scbgxb2017.06.031.
SHAO X F, ZHAO H D, ZHU F L, et al. Numerical simulation of a new flexible compound protective structure [J]. Journal of Ordnance Equipment Engineering, 2017, 38(6): 142–145. DOI: 10.11809/scbgxb2017.06.031.
|
[12] |
苗成, 钟涛, 李兵伟, 等. 陶瓷复合装甲抗爆轰性能试验研究 [J]. 兵器装备工程学报, 2020, 41(S1): 40–43. DOI: 10.11809/bqzbgcxb2020.S1.010.
MIAO C, ZHONG T, LI B W, et al. Study on anti-detonation performance of ceramic composite armor [J]. Journal of Ordnance Equipment Engineering, 2020, 41(S1): 40–43. DOI: 10.11809/bqzbgcxb2020.S1.010.
|
[13] |
王燕, 李梦群, 杨淼慧, 等. 复合防护结构抗破片侵彻性能的研究 [J]. 火工品, 2022(4): 16–20. DOI: 10.3969/j.issn.1003-1480.2022.04.004.
WANG Y, LI M Q, YANG M H, et al. Study on anti-fragment penetration performance of composite protective structure [J]. Initiators & Pyrotechnics, 2022(4): 16–20. DOI: 10.3969/j.issn.1003-1480.2022.04.004.
|
[14] |
张玉玉, 王树山, 任凯, 等. 小尺寸钨块对单兵防护装备侵彻的弹道极限研究 [J]. 兵器装备工程学报, 2020, 41(2): 60–62, 110. DOI: 10.11809/bqzbgcxb2020.02.013.
ZHANG Y Y, WANG S S, REN K, et al. Research on ballistic limit of individual soldier equipment with small size tungsten blocks [J]. Journal of Ordnance Equipment Engineering, 2020, 41(2): 60–62, 110. DOI: 10.11809/bqzbgcxb2020.02.013.
|
[15] |
HAN R G, QU Y J, YAN W M, et al. Experimental study of transient pressure wave in the behind armor blunt trauma induced by different rifle bullets [J]. Defence Technology, 2020, 16(4): 900–909. DOI: 10.1016/j.dt.2019.11.010.
|
[16] |
唐昌州, 智小琦, 郝春杰, 等. 防弹衣抗小钨球侵彻性能的数值模拟 [J]. 高压物理学报, 2021, 35(3): 034203. DOI: 10.11858/gywlxb.20210715.
TANG C Z, ZHI X Q, HAO C J, et al. Numerical simulation of anti-penetration performance of body armor against small tungsten sphere [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034203. DOI: 10.11858/gywlxb.20210715.
|
[17] |
李茂, 侯海量, 朱锡, 等. 结构间隙对芳纶纤维增强复合装甲结构抗侵彻性能的影响 [J]. 兵工学报, 2017, 38(9): 1797–1805. DOI: 10.3969/j.issn.1000-1093.2017.09.017.
LI M, HOU H L, ZHU X, et al. Influence of structural interspace on anti-penetration performance of para-aramid fiber-reinforced composite armor system [J]. Acta Armamentarii, 2017, 38(9): 1797–1805. DOI: 10.3969/j.issn.1000-1093.2017.09.017.
|
[18] |
YANG F Y, LI Z J, LIU Z L, et al. Shock loading mitigation performance and mechanism of the PE/wood/PU/foam structures [J]. International Journal of Impact Engineering, 2021, 155: 103904. DOI: 10.1016/j.ijimpeng.2021.103904.
|
[19] |
胡年明, 陈长海, 侯海量, 等. 高速弹丸冲击下复合材料层合板损伤特性仿真研究 [J]. 兵器材料科学与工程, 2017, 40(3): 66–70. DOI: 10.14024/j.cnki.1004-244x.20170427.008.
HU N M, CHEN C H, HOU H L, et al. Simulation on damage characteristic of composite laminates under high-velocity projectile impact [J]. Ordnance Material Science and Engineering, 2017, 40(3): 66–70. DOI: 10.14024/j.cnki.1004-244x.20170427.008.
|
[20] |
JIANG Y X, ZHANG B Y, WEI J S, et al. Study on the dynamic response of polyurea coated steel tank subjected to blast loadings [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104234. DOI: 10.1016/j.jlp.2020.104234.
|
[21] |
郑秋杰, 郭迎福, 蔡志华, 等. 步枪弹高速冲击下防弹头盔功能梯度泡沫内衬的防护性能 [J]. 兵工学报, 2021, 42(6): 1275–1282. DOI: 10.3969/j.issn.1000-1093.2021.06.018.
ZHENG Q J, GUO Y F, CAI Z H, et al. Protective performance of functionally graded foam lining subjected to high-speed rifle bullet impact [J]. Acta Armamentarii, 2021, 42(6): 1275–1282. DOI: 10.3969/j.issn.1000-1093.2021.06.018.
|
[22] |
WU J, LIU Z C, YU J, et al. Experimental and numerical investigation of normal reinforced concrete panel strengthened with polyurea under near-field explosion [J]. Journal of Building Engineering, 2022, 46: 103763. DOI: 10.1016/j.jobe.2021.103763.
|
[23] |
LI S Q, LI X, WANG Z H, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1–12. DOI: 10.1016/j.compositesa.2015.09.025.
|
[24] |
杨光, 张博一, 韦建树, 等. 聚脲喷涂钢制罐体抗爆性能试验及数值模拟研究 [J]. 土木与环境工程学报, 2023, 45(1): 44–53. DOI: 10.11835/j.issn.2096-6717.2021.168.
YANG G, ZHANG B Y, WEI J S, et al. Experimental and numerical simulation study on blast-resistance capacity of polyurea sprayed steel tank [J]. Journal of Civil and Environmental Engineering, 2023, 45(1): 44–53. DOI: 10.11835/j.issn.2096-6717.2021.168.
|
[25] |
GUO G D, ALAM S, PEEL L D. An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles [J]. International Journal of Impact Engineering, 2021, 157: 104000. DOI: 10.1016/j.ijimpeng.2021.104000.
|
[26] |
BRESCIANI L M, MANES A, RUGGIERO A, et al. Experimental tests and numerical modelling of ballistic impacts against Kevlar 29 plain-woven fabrics with an epoxy matrix: macro-homogeneous and meso-heterogeneous approaches [J]. Composites Part B: Engineering, 2016, 88: 114–130. DOI: 10.1016/j.compositesb.2015.10.039.
|
[27] |
朱学亮. 聚脲金属复合结构抗冲击防护性能研究 [D]. 北京: 北京理工大学, 2016. DOI: 10.26948/d.cnki.gbjlu.2016.000315.
ZHU X L. Study on impact and blast resistance of polyurea metal composite structure [D]. Beijing: Beijing Institute of Technology, 2016. DOI: 10.26948/d.cnki.gbjlu.2016.000315.
|
[28] |
SADOVSKYI M A. Mechanical action of air shock waves of explosion, based on experimental data [M]. Moscow: Izd Akad Nauk SSSR, 1952.
|