Citation: | XIAO Youcai, WANG Ruisheng, FAN Chenyang, ZHANG Hong, WANG Zhijun, SUN Yi. Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation[J]. Explosion And Shock Waves, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555 |
[1] |
郭伟, 贾路川, 王浩旭, 等. 加速老化PBX-6炸药的烤燃实验研究 [J]. 火炸药学报, 2022, 45(3): 315–322. DOI: 10.14077/j.issn.1007-7812.202203040.
GUO W, JIA L C, WANG H X, et al. Experimental research on cook-off test of accelerated aging PBX-6 explosive [J]. Chinese Journal of Explosives and Propellants, 2022, 45(3): 315–322. DOI: 10.14077/j.issn.1007-7812.202203040.
|
[2] |
刘静, 余永刚. 不同升温速率下模块装药慢速烤燃特性的数值模拟 [J]. 兵工学报, 2019, 40(5): 990–995. DOI: 10.3969/j.issn.1000-1093.2019.05.011.
LIU J, YU Y G. Simulation of slow cook-off for modular charges at different heating rates [J]. Acta Armamentarii, 2019, 40(5): 990–995. DOI: 10.3969/j.issn.1000-1093.2019.05.011.
|
[3] |
王沛, 陈朗, 冯长根. 不同升温速率下炸药烤燃模拟计算分析 [J]. 含能材料, 2009, 17(1): 46–49, 54. DOI: 10.3969/j.issn.1006-9941.2009.01.012.
WANG P, CHEN L, FENG C G. Numerical simulation of cook-off for explosive at different heating rates [J]. Chinese Journal of Energetic Materials, 2009, 17(1): 46–49, 54. DOI: 10.3969/j.issn.1006-9941.2009.01.012.
|
[4] |
邓玉成, 李军, 任慧, 等. 不同结构尺寸丁羟发动机慢速烤燃特性 [J]. 含能材料, 2022, 30(2): 155–162. DOI: 10.11943/CJEM2021097.
DENG Y C, LI J, REN H, et al. Slow cook-off characteristics of HTPB SRM with different structural sizes [J]. Chinese Journal of Energetic Materials, 2022, 30(2): 155–162. DOI: 10.11943/CJEM2021097.
|
[5] |
MERZHANOV A G, AVERSON A E. The present state of the thermal ignition theory: an invited review [J]. Combustion and Flame, 1971, 16(1): 89–124. DOI: 10.1016/S0010-2180(71)80015-9.
|
[6] |
TERRONES G, SOUTO F J, SHEA R F, et al. Data analysis, pre-ignition assessment, and post-ignition modeling of the large-scale annular cookoff tests: LA-14190 [R]. Los Alamos, USA: Los Alamos National Laboratory, 2005. DOI: 10.2172/861364.
|
[7] |
ASAY B W. Shock wave science and technology reference library, vol. 5: non-shock initiation of explosives [M]. Berlin, Germany: Springer, 2010: 198–200. DOI: 10.1007/978-3-540-87953-4.
|
[8] |
刘仓理. 装药化爆安全性 [M]. 北京: 科学出版社, 2022: 123–127.
LIU C L. Explosive safety of charge [M]. Beijing, China: Science Press, 2022: 123–127.
|
[9] |
PARKER R P. USA small-scale cook-off bomb (SCB) test [C]//Minutes of 21st Department of Defense Explosives Safety Board Explosives Safety Seminar. Houston, USA, 1984: 539–548.
|
[10] |
HOBBS M L, KANESHIGE M J, ERIKSON W W. Modeling the measured effect of a nitroplasticizer (BDNPA/F) on cookoff of a plastic bonded explosive (PBX 9501) [J]. Combustion and Flame, 2016, 173: 132–150. DOI: 10.1016/j.combustflame.2016.08.014.
|
[11] |
KOU Y F, CHEN L, LU J Y, et al. Assessing the thermal safety of solid propellant charges based on slow cook-off tests and numerical simulations [J]. Combustion and Flame, 2021, 228: 154–162. DOI: 10.1016/j.combustflame.2021.01.043.
|
[12] |
LI X D, WANG J Y, LIU W J, et al. Effect of vent hole size on combustion and explosion characteristics during cook-off tests [J]. Combustion and Flame, 2022, 240: 111989. DOI: 10.1016/j.combustflame.2022.111989.
|
[13] |
智小琦, 胡双启, 李娟娟, 等. 不同约束条件下钝化RDX的烤燃响应特性 [J]. 火炸药学报, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.
ZHI X Q, HU S Q, LI J J, et al. Cook-off response characteristics of desensitizing RDX explosive under different restriction conditions [J]. Chinese Journal of Explosives and Propellants, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.
|
[14] |
WHITE N, REEVES T, CHEESE P, et al. Live decomposition imaging of HMX/HTPB based formulations during cook-off in the dual window test vehicle [J]. AIP Conference Proceedings, 2018, 1979(1): 150041.
|
[15] |
CHEESE P, REEVES T, WHITE N, et al. Development of a dual windowed test vehicle for live streaming of cook-off in energetic materials [J]. AIP Conference Proceedings, 2018, 1979(1): 150009.
|
[16] |
乔炳旭, 李小东, 燕翔, 等. 粘结剂种类和含量对HMX基PBX烤燃响应特性的影响研究 [J]. 兵器装备工程学报, 2021, 42(12): 261–267. DOI: 10.11809/bqzbgcxb2021.12.040.
QIAO B X, LI X D, YAN X, et al. Study on influence of binder type and content of HMX-based PBX on response behavior under cook-off conditions [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 261–267. DOI: 10.11809/bqzbgcxb2021.12.040.
|
[17] |
TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. DOI: 10.1080/07370650701719170.
|
[18] |
CHAVES F R, GÓIS J C. Slow cook-off simulation of PBX based on RDX [J]. Journal of Aerospace Technology and Management, 2017, 9(2): 225–230. DOI: 10.5028/jatm.v9i2.729.
|
[19] |
JORENBY J W. Heat transfer analysis and assessment of kinetics systems for PBX 9501: LA-14259-T [R]. Los Alamos, USA: Los Alamos National Laboratory, 2006. DOI: 10.2172/902466.
|
[20] |
JAEGER D L. Thermal response of spherical explosive charges subjected to external heating: W-7405-ENG-36 [R]. Los Alamos, USA: Los Alamos National Laboratory, 1980. DOI: 10.2172/5102476.
|
[21] |
DICKSON P M, ASAY B W, HENSON B F, et al. Measurement of phase change and thermal decomposition kinetics during cookoff of PBX 9501 [J]. AIP Conference Proceedings, 2000, 505(1): 837–840.
|
[22] |
刘瑞峰, 王昕捷, 黄风雷, 等. 2, 4-二硝基苯甲醚基熔铸炸药宏细观烤燃响应特性数值分析 [J]. 兵工学报, 2022, 43(2): 287–296. DOI: 10.3969/j.issn.1000-1093.2022.02.006.
LIU R F, WANG X J, HUANG F L, et al. Macro-meso-scale cook-off simulations of DNAN-based melt-cast explosives [J]. Acta Armamentarii, 2022, 43(2): 287–296. DOI: 10.3969/j.issn.1000-1093.2022.02.006.
|
[23] |
陈朗, 马欣, 黄毅民, 等. 炸药多点测温烤燃实验和数值模拟 [J]. 兵工学报, 2011, 32(10): 1230–1236.
CHEN L, MA X, HUANG Y M, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive [J]. Acta Armamentarii, 2011, 32(10): 1230–1236.
|
[24] |
GRASWALD M, GUTSER R, SCHWEIZER M. Extended multi-physics model for slow-cook off events of warheads [C]//Insensitive Munitions and Energetic Materials Technology Symposium. Seville, Spain, 2019.
|
[25] |
Defence Investment Division, NATO International Staff. Guidance on the assessment and development of insensitive munitions (IM): AOP-39 (3rd ed) [S]. USA: Allied Ordnance Publication, 2010. DOI: 10.5281/zenodo.3592238.
|
[26] |
XIAO Y C, SUN Y, LI X, et al. Dynamic compressive properties of polymer bonded explosives under confining pressure [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 873–882. DOI: 10.1002/prep.201700016.
|
[27] |
李硕, 袁俊明, 刘玉存, 等. 聚黑-14C的传爆装置冲击起爆实验及数值模拟 [J]. 火炸药学报, 2016, 39(6): 63–68. DOI: 10.14077/j.issn.1007-7812.2016.06.011.
LI S, YUAN J M, LIU Y C, et al. Experiment and numerical simulation of shock initiation of JH-14C detonation device [J]. Chinese Journal of Explosives and Propellants, 2016, 39(6): 63–68. DOI: 10.14077/j.issn.1007-7812.2016.06.011.
|
[28] |
代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.
DAI X G, HUANG Y M, LV Z J, et al. Reaction behavior for PBX-2 explosive at different heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.
|
[29] |
牛余雷, 南海, 冯晓军, 等. RDX基PBX炸药烤燃试验与数值计算 [J]. 火炸药学报, 2011, 34(1): 32–36, 41. DOI: 10.3969/j.issn.1007-7812.2011.01.007.
NIU Y L, NAN H, FENG X J, et al. Cook-off test and its numerical calculation of RDX-based PBX explosive [J]. Chinese Journal of Explosives and Propellants, 2011, 34(1): 32–36, 41. DOI: 10.3969/j.issn.1007-7812.2011.01.007.
|