Citation: | HUANG Jie, LI Minghong, WU Tuozhan, ZONG Zhouhong. Experimental and numerical simulation studies on blast-induced craters in calcareous sand[J]. Explosion And Shock Waves, 2023, 43(10): 102203. doi: 10.11883/bzycj-2022-0556 |
[1] |
YU X, CHEN L, FANG Q, et al. Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave [J]. International Journal of Impact Engineering, 2019, 125: 63–82. DOI: 10.1016/j.ijimpeng.2018.11.004.
|
[2] |
OUYANG H R, DAI G L, QIN W, et al. Dynamic behaviors of calcareous sand under repeated one-dimensional impacts [J]. Soil Dynamics and Earthquake Engineering, 2021, 150: 106891. DOI: 10.1016/j.soildyn.2021.106891.
|
[3] |
DONG K, REN H Q, RUAN W J, et al. Dynamic mechanical behavior of different coral sand subjected to impact loading [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(9): 1512–1523. DOI: 10.1177/0954406220967683.
|
[4] |
KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. Berlin: Springer, 1985.
|
[5] |
贾永胜, 王维国, 谢先启, 等. 低含水率砂土和饱和砂土场地爆炸成坑特性实验 [J]. 爆炸与冲击, 2017, 37(5): 799–806. DOI: 10.11883/1001-1455(2017)05-0799-08.
JIA Y S, WANG W G, XIE X Q, et al. Characterization of blast-induced craters in low-moisture and saturated sand from field experiments [J]. Explosion and Shock Waves, 2017, 37(5): 799–806. DOI: 10.11883/1001-1455(2017)05-0799-08.
|
[6] |
XU R Z, CHEN L, ZHENG Y Z, et al. Study of crater in the Gobi desert induced by ground explosion of large amounts of TNT explosive up to 10 tons [J]. Shock and Vibration, 2021, 2021: 7357877. DOI: 10.1155/2021/7357877.
|
[7] |
LUCCIONI B, AMBROSINI D, NURICK G, et al. Craters produced by underground explosions [J]. Computers & Structures, 2009, 87(21/22): 1366–1373. DOI: 10.1016/j.compstruc.2009.06.002.
|
[8] |
DE A. Numerical simulation of surface explosions over dry, cohesionless soil [J]. Computers and Geotechnics, 2012, 43: 72–79. DOI: 10.1016/j.compgeo.2012.02.007.
|
[9] |
穆朝民, 任辉启, 辛凯, 等. 变埋深条件下土中爆炸成坑效应 [J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 112–116. DOI: 10.3969/j.issn.1009-3443.2010.02.003.
MU C M, REN H Q, XIN K, et al. Effects of crater formed by explosion in soils [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2): 112–116. DOI: 10.3969/j.issn.1009-3443.2010.02.003.
|
[10] |
ZHAO X H, WANG G H, LU W B, et al. Damage features of RC slabs subjected to air and underwater contact explosions [J]. Ocean Engineering, 2018, 147: 531–545. DOI: 10.1016/j.oceaneng.2017.11.007.
|
[11] |
钟诗蕴, 孙鹏楠, 吕鸿冠, 等. SPH理论和方法在高速水动力学中的研究进展 [J]. 中国舰船研究, 2022, 17(3): 29–48. DOI: 10.19693/j.issn.1673-3185.02758.
ZHONG S Y, SUN P N, LV H G, et al. Research progress of smoothed particle hydrodynamics and its applications in high-speed hydrodynamic problems [J]. Chinese Journal of Ship Research, 2022, 17(3): 29–48. DOI: 10.19693/j.issn.1673-3185.02758.
|
[12] |
王维国, 刘汉龙, 陈育民, 等. 砂土地基触地爆炸的SPH-FEM耦合分析方法 [J]. 解放军理工大学学报(自然科学版), 2013, 14(3): 271–276. DOI: 10.3969/j.issn.1009-3443.2012.06.210.
WANG W G, LIU H L, CHEN Y M, et al. Coupled SPH-FEM method for analyzing touchdown explosion in sand foundation [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(3): 271–276. DOI: 10.3969/j.issn.1009-3443.2012.06.210.
|
[13] |
王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟 [J]. 爆炸与冲击, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.
WANG Z L, BI C C, LI H R. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm [J]. Explosion and Shock Waves, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.
|
[14] |
YANG G D, WANG G H, LU W B, et al. A SPH-Lagrangian-Eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion [J]. KSCE Journal of Civil Engineering, 2018, 22(8): 3085–3101. DOI: 10.1007/s12205-017-0610-1.
|
[15] |
中国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019 [S]. 北京: 中国计划出版社, 2019.
|
[16] |
US Department of the Army. Fundamentals of protective design for conventional weapons: TM5-855-1 [S]. Washington, USA: US Department of the Army, 1986.
|
[17] |
王维国, 陈育民, 杨贵, 等. 湿砂场地爆炸成坑效应的现场试验与数值模拟研究 [J]. 岩石力学与工程学报, 2016, 35(1): 68–75. DOI: 10.13722/j.cnki.jrme.2015.0171.
WANG W G, CHEN Y M, YANG G, et al. Field tests and numerical simulations of blast-induced crater in wet sands [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(1): 68–75. DOI: 10.13722/j.cnki.jrme.2015.0171.
|
[18] |
谢述春, 姜春兰, 王在成, 等. 多层混凝土介质内爆炸相似性分析 [J]. 兵工学报, 2019, 40(6): 1198–1206. DOI: 10.3969/j.issn.1000-1093.2019.06.010.
XIE S C, JIANG C L, WANG Z C, et al. Analysis of similarity law of explosion in multi-layer concrete medium [J]. Acta Armamentarii, 2019, 40(6): 1198–1206. DOI: 10.3969/j.issn.1000-1093.2019.06.010.
|
[19] |
吴拓展, 宗周红, 李明鸿, 等. 浅埋单药包爆炸作用下饱和钙质砂基础液化数值模拟 [J]. 东南大学学报(自然科学版), 2022, 52(2): 237–246. DOI: 10.3969/j.issn.1001-0505.2022.02.005.
WU T Z, ZONG Z H, LI M H, et al. Numerical simulation of liquefaction in saturated calcareous sand foundation induced by single charge shallow-buried explosion [J]. Journal of Southeast University (Natural Science Edition), 2022, 52(2): 237–246. DOI: 10.3969/j.issn.1001-0505.2022.02.005.
|
[20] |
董凯. 爆炸冲击下珊瑚砂动态力学特性研究 [D]. 南京: 南京理工大学, 2021.
DONG K. Dynamic mechanical behavior of coral sand subjected to blast and impact loading [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology , 2021.
|
[21] |
郝保田. 地下核爆炸及其应用 [M]. 北京: 国防工业出版社, 2002.
|