Volume 43 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
YANG Pu, LI Jicheng, CHEN Jianliang, ZHANG Bin, HE Liling, CHEN Gang. Influence rule of impact attitude on trajectory characteristics of warhead’s non-normally penetration into multi-layer spaced steel target[J]. Explosion And Shock Waves, 2023, 43(9): 091407. doi: 10.11883/bzycj-2022-0571
Citation: YANG Pu, LI Jicheng, CHEN Jianliang, ZHANG Bin, HE Liling, CHEN Gang. Influence rule of impact attitude on trajectory characteristics of warhead’s non-normally penetration into multi-layer spaced steel target[J]. Explosion And Shock Waves, 2023, 43(9): 091407. doi: 10.11883/bzycj-2022-0571

Influence rule of impact attitude on trajectory characteristics of warhead’s non-normally penetration into multi-layer spaced steel target

doi: 10.11883/bzycj-2022-0571
  • Received Date: 2022-12-29
  • Accepted Date: 2023-07-10
  • Rev Recd Date: 2023-05-30
  • Available Online: 2023-07-19
  • Publish Date: 2023-09-11
  • In order to deeply investigate the trajectory deflection characteristics of a warhead during the non-normal penetration into the multi-layer spaced target, the trajectories under different impact attitudes are analyzed with combined numerical simulation and theoretical analysis, in which finite element method (FEM) simulations on the penetration process under various impact conditions are conducted systemically, and the deformation and failure morphologies of warhead and target as well as the interaction characteristics between them are discussed in detail. Besides some feature parameters, lateral contact force and angular moment, are introduced in the theoretical analysis. Furthermore, the influence rules of oblique angle and attacking angle on the trajectory deflection characteristics are investigated in detail. Related results indicate that during the non-normal penetration into multi-layer spaced target, the warhead behaves as small staged axial velocity decay combined with obvious lateral trajectory deflection, and the trajectory deflection is mainly derived from the lateral contact force as well as the corresponding angular moment, and the lateral contact force mainly makes its effect during three periods, i.e., when the nose, shoulder and tail of warhead pass through the target, respectively. The oblique angle mainly affects the degree of external load asymmetry exerting on the warhead with increase of the oblique angle, the downward lateral contact force as well as the corresponding angular moment exerting on the warhead all increase, thus the trajectory deflection becomes more severe. Comparatively, the attacking angle determines two factors, one is the radial velocity of warhead at the time when its nose passes through the target, and another is the contact position between the warhead and target when the warhead tail passes through the target. These two factors determine the trajectory simultaneously, so different attacking angles make the lateral contact force and the corresponding angular moment differing from each other during the process of the warhead tail passing through the first target, leading to a critical attacking angle at which the evolution trend of trajectory deflection would turn the other way round. Compared to the penetration into a single layer target, a remarkable feature in the penetration of a warhead into the multi-layer spaced target is that the trajectory deflection shows a cumulative effect, and the situation in the penetration into the former target plate significantly affects the interaction condition between the warhead and the latter target plates, and this further results in a coupling effect between the trajectory deflection and the contact force. The present investigation is of good significance in the practical engineering application, e.g., predicting the penetrating ability of a warhead into the multi-layer spaced target, and optimizing the warhead structure and its impact attitude, etc.
  • loading
  • [1]
    徐峰, 周心桃, 李德聪, 等. 国外典型航母目标特性探析 [J]. 舰船科学技术, 2018, 40(9): 151–157. DOI: 10.3404/j.issn.1672-7649.2018.09.030.

    XU F, ZHOU X T, LI D C, et al. Analysis of the target characteristics of foreign typical aircraft carrier [J]. Ship Science and Technology, 2018, 40(9): 151–157. DOI: 10.3404/j.issn.1672-7649.2018.09.030.
    [2]
    GOLDSMITH W. Review non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22: 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [3]
    ANDERSON J C. Analytical models for penetration mechanics: a review [J]. International Journal of Impact Engineering, 2017, 108: 3–26. DOI: 10.1016/j.ijimpeng.2017.03.018.
    [4]
    段卓平, 李淑睿, 马兆芳, 等. 刚性弹体斜侵彻贯穿混凝土靶的姿态偏转理论模型 [J]. 爆炸与冲击, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.

    DUAN Z P, LI S R, MA Z F, et al. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets [J]. Explosion and Shock Waves, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.
    [5]
    WU H, PENG Y, KONG X Z. Notes on projectile impact analyses [M]. Singapore: Springer Press, 2020. DOI: 10.1007/978-981-13-3253-1.
    [6]
    陈小伟. 穿甲/侵彻力学的理论建模与分析 [M]. 北京: 科学出版社, 2020.
    [7]
    刘泓甫, 黄风雷, 白志玲, 等. 刚性弹体带攻角斜侵彻贯穿混凝土靶板的理论模型研究 [J]. 兵工学报, 2023, 44(8): 2381–2390. DOI: 10.12382/bgxb.2022.0423.

    LIU H F, HUANG F L, BAI Z L, et al. Analytical model research on penetration of rigid projectile into concrete target with oblique and attacking angle [J]. Acta Armamentarii, 2023, 44(8): 2381–2390. DOI: 10.12382/bgxb.2022.0423.
    [8]
    董永香, 冯顺山, 段相杰. 弹丸斜侵彻多层金属间隔靶特性研究 [J]. 中北大学学报 (自然科学版), 2010, 31(3): 221–226. DOI: 10.3969/j.issn.1673-3193.2010.03.004.

    DONG Y X, FENG S S, DUAN X J. Oblique penetration characteristics of multi-layered spaced targets by steel projectiles [J]. Journal of North University of China (Natural Science Edition), 2010, 31(3): 221–226. DOI: 10.3969/j.issn.1673-3193.2010.03.004.
    [9]
    王金涛, 余文力, 王涛, 等. SPH算法在长杆弹侵彻多层间隔靶中的应用 [J]. 爆炸与冲击, 2011, 31(5): 533–539. DOI: 10.11883/1001-1455(2011)05-0533-07.

    WANG J T, YU W L, WANG T, et al. Smoothed particle hydrodynamics algorithm applied in numerical simulation of layered metal targets impacted by long-rod projectile [J]. Explosion and Shock Waves, 2011, 31(5): 533–539. DOI: 10.11883/1001-1455(2011)05-0533-07.
    [10]
    黄岐, 周彤, 白洋, 等. 弹丸变攻角侵彻间隔靶弹道极限研究 [J]. 兵工学报, 2016, 37(S2): 251–257.

    HUANG Q, ZHOU T, BAI Y, et al. Ballistic performance of projectile penetrating large-spaced multi-layer plates at variable angle-of-attack [J]. Acta Armamentarri, 2016, 37(S2): 251–257.
    [11]
    IQBAL M, SENTHIL K, MADHU V, et al. Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles [J]. International Journal of Impact Engineering, 2017, 110: 26–38. DOI: 10.1016/j.ijimpeng.2017.04.011.
    [12]
    程伟, 熊国松, 李伟兵, 等. 俯仰角速度对弹丸侵彻多层靶弹道影响 [J]. 含能材料, 2021, 29(12): 1192–1198. DOI: 10.11943/CJEM2021033.

    CHENG W, XIONG G S, LI W B, et al. Influence of the pitch angular velocity on the ballistic trajectory of projectiles penetrating into multi-layered target [J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1192–1198. DOI: 10.11943/CJEM2021033.
    [13]
    张立建, 郭洪卫, 吕永柱, 等. 两种侵彻载荷下装药结构动态响应特性数值模拟 [J]. 现代防御技术, 2021, 49(5): 111–117. DOI: 10.3969/j.issn.1009-086x.2021.05.015.

    ZHANG L J, GUO H W, LV Y Z, et al. Numerical simulation of dynamic response characteristic of charge structure under two types of penetration loads [J]. Modern Defence Technology, 2021, 49(5): 111–117. DOI: 10.3969/j.issn.1009-086x.2021.05.015.
    [14]
    成丽蓉, 汪德武, 贺元吉, 等. 弹体斜侵彻多层间隔混凝土薄靶姿态偏转机理研究 [J]. 北京理工大学学报, 2022, 42(10): 1009–1016. DOI: 10.15918/j.tbit1001-0645.2021.299.

    CHENG L R, WANG D W, HE Y J, et al. Effect of projectile oblique penetrating into multi-layered thin concrete slabs on attitude deflection [J]. Transactions of Beijing Institute of Technology, 2022, 42(10): 1009–1016. DOI: 10.15918/j.tbit1001-0645.2021.299.
    [15]
    马兆芳, 段卓平, 欧卓成, 等. 弹体斜侵彻多层间隔混凝土靶实验和数值模拟 [J]. 北京理工大学学报, 2016, 36(10): 1001–1005. DOI: 10.15918/j.tbit1001-0645.2016.10.003.

    MA Z F, DUAN Z P, OU Z C, et al. Experimental and simulative research on projectile oblique penetration into concrete targets with multi-layered space structure [J]. Transactions of Beijing Institute of Technology, 2016, 36(10): 1001–1005. DOI: 10.15918/j.tbit1001-0645.2016.10.003.
    [16]
    吴普磊, 李鹏飞, 董平, 等. 攻角对弹体斜侵彻多层混凝土靶弹道偏转影响的数值模拟及试验验证 [J]. 火炸药学报, 2018, 41(2): 202–207. DOI: 10.14077/j.issn.1007-7812.2018.02.017.

    WU P L, LI P F, DONG P, et al. Numerical simulation and experimental verification on the influence of angle of attack on ballistic deflection of oblique penetrating multi-layer concrete targets for projectile [J]. Chinese Journal of Explosives and Propellants, 2018, 41(2): 202–207. DOI: 10.14077/j.issn.1007-7812.2018.02.017.
    [17]
    李鹏飞, 吕永柱, 周涛, 等. 弹头形状对侵彻多层靶弹道的影响 [J]. 含能材料, 2021, 29(2): 124–131. DOI: 10.11943/CJEM2020291.

    LI P F, LV Y Z, ZHOU T, et al. Influence of warhead shape on the trajectory of penetrating multilayer target [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 124–131. DOI: 10.11943/CJEM2020291.
    [18]
    杜华池, 张先锋, 刘闯, 等. 弹体斜侵彻多层间隔钢靶的弹道特性 [J]. 兵工学报, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.

    DU H C, ZHANG X F, LIU C, et al. Trajectory characteristics of projectile obliquely penetrating into steel target with multi-layer space structure [J]. Acta Armamentarii, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.
    [19]
    李鹏程, 张先锋, 刘 闯, 等. 攻角和入射角对弹体侵彻混凝土薄靶弹道特性影响规律研究 [J]. 爆炸与冲击, 2022, 42(11): 113302. DOI: 10.11883/bzycj-2021-0435.

    LI P C, ZHANG X F, LIU C, et al. Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets [J]. Explosion and Shock Waves, 2022, 42(11): 113302. DOI: 10.11883/bzycj-2021-0435.
    [20]
    HANG Y, SHANG F, GAO S, et al. A miniature and low-power-consumption stress measurement system for embedded explosive in multilayer target penetration [J]. Shock and Vibration, 2020: 5294607. DOI: 10.1155/2020/5294607.
    [21]
    张萌昭, 周涛, 郭洪福, 等. 侵彻多层间隔靶板装药损伤特性研究 [J]. 兵器装备工程学报, 2021, 42(12): 92–97. DOI: 10.11809/bqzbgcxb2021.12.013.

    ZHANG M Z, ZHOU T, GUO H F, et al. Experimental study of charge damage in multi-layer target penetration process [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 92–97. DOI: 10.11809/bqzbgcxb2021.12.013.
    [22]
    Jane’s IHS Markit. BLU-109/B penetrator [J]. Jane’s Air-Launched Weapons, 2019.
    [23]
    邓佳杰, 张先锋, 陈东东, 等. 串联随进弹侵彻预开孔靶弹道轨迹的数值模拟 [J]. 兵工学报, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.

    DENG J J, ZHANG X F, CHEN D D, et al. Numerical simulation of the trajectory of travelling projectile penetrating into pre-drilled target [J]. Acta Armamentarii, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.
    [24]
    张斌, 李继承, 陈建良, 等. 构型弹体跌落冲击载荷及结构响应特性 [J]. 爆炸与冲击, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.

    ZHANG B, LI J C, CHEN J L, et al. Loading characteristics and structural response of warhead during the drop impact [J]. Explosion and Shock Waves, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.
    [25]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature [C] // Proceedings of the Seventh International Symposium of Ballistics. Hague, Netherlands: International Ballistics Committee, 1983: 541–547.
    [26]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [27]
    王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017.
    [28]
    田杰, 胡时胜. G50钢动态力学性能的实验研究 [J]. 工程力学, 2006, 23(6): 107–109. DOI: 10.3969/j.issn.1000-4750.2006.06.019.

    TIAN J, HU S S. Research of dynamic mechanical behaviors of G50 steel [J]. Engineering Mechanics, 2006, 23(6): 107–109. DOI: 10.3969/j.issn.1000-4750.2006.06.019.
    [29]
    陈刚, 陈忠富, 陶俊林, 等. TC4动态力学性能研究 [J]. 实验力学, 2005, 20(4): 605–609. DOI: 10.3969/j.issn.1001-4888.2005.04.019.

    CHEN G, CHEN Z F, TAO J L, et al. Study on plastic constitutive relationship parameters of TC4 titanium [J]. Journal of Experimental Mechanics, 2005, 20(4): 605–609. DOI: 10.3969/j.issn.1001-4888.2005.04.019.
    [30]
    MEYER JR H W, KLEPONIS D S. Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration [J]. International Journal of Impact Engineering, 2001, 26: 509–521. DOI: 10.1016/S0734-743X(01)00107-5.
    [31]
    李继承, 陈小伟, 陈刚. 921A钢纯剪切帽状试件在SHPB试验中的动态变形 [J]. 爆炸与冲击, 2010, 30(3): 239–246. DOI: 10.11883/1001-1455(2010)03-0239-08.

    LI J C, CHEN X W, CHEN G. Dynamic deformations of 921A steel pure shear hat-shaped specimen in SHPB tests [J]. Explosion and Shock Waves, 2010, 30(3): 239–246. DOI: 10.11883/1001-1455(2010)03-0239-08.
    [32]
    李继承, 陈小伟, 陈刚. 921A钢纯剪切帽状试件绝热剪切变形的数值模拟 [J]. 爆炸与冲击, 2010, 30(4): 361–369. DOI: 10.11883/1001-1455(2010)04-0361-09.

    LI J C, CHEN X W, CHEN G. Numerical simulations on adiabatic shear deformations of 921A steel pure shear hat-shaped specimens [J]. Explosion and Shock Waves, 2010, 30(4): 361–369. DOI: 10.11883/1001-1455(2010)04-0361-09.
    [33]
    魏强, 黄西成, 陈刚, 等. 高聚物粘结炸药动态损伤破坏的数值刻画 [J]. 兵工学报, 2019, 40(7): 1381–1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007.

    WEI Q, HUANG X C, CHEN G, et al. Numerical characterization of dynamic damage of PBX explosive [J]. Acta Armamentarii, 2019, 40(7): 1381–1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007.
    [34]
    胡偲, 吴艳青, 黄风雷. 高温下带金属壳PBX炸药低速撞击敏感性数值模拟 [J]. 爆炸与冲击, 2019, 39(4): 041403. DOI: 10.11883/bzycj-2017-0254.

    HU C, WU Y Q, HUANG F L. Numerical simulation of confined PBX charge under low velocity impact at high temperature [J]. Explosion and Shock Waves, 2019, 39(4): 041403. DOI: 10.11883/bzycj-2017-0254.
    [35]
    陈小伟, 李维, 宋成. 细长尖头刚性弹对金属靶板的斜侵彻/穿甲分析 [J]. 爆炸与冲击, 2005, 25(5): 393–399. DOI: 10.11883/1001-1455(2005)05-0393-07.

    CHEN X W, LI W, SONG C. Oblique penetration/perforation of metallic plates by rigid projectiles with slender bodies and sharp noses [J]. Explosion and Shock Waves, 2005, 25(5): 393–399. DOI: 10.11883/1001-1455(2005)05-0393-07.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(5)

    Article Metrics

    Article views (169) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return