Volume 43 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LIANG Xiao, WANG Ruili, HU Xingzhi, CHEN Jiangtao. Uncertainty analysis of C-J detonation parameters based on polynomial chaos theory[J]. Explosion And Shock Waves, 2023, 43(10): 104202. doi: 10.11883/bzycj-2023-0030
Citation: LIANG Xiao, WANG Ruili, HU Xingzhi, CHEN Jiangtao. Uncertainty analysis of C-J detonation parameters based on polynomial chaos theory[J]. Explosion And Shock Waves, 2023, 43(10): 104202. doi: 10.11883/bzycj-2023-0030

Uncertainty analysis of C-J detonation parameters based on polynomial chaos theory

doi: 10.11883/bzycj-2023-0030
  • Received Date: 2023-02-07
  • Accepted Date: 2023-07-04
  • Rev Recd Date: 2023-04-29
  • Publish Date: 2023-10-27
  • The Chapman-Jouguet theory is a powerful tool to predict the states of physical quantities at the rear of the shock front. However, uncertain factors and their influences on the system response quantities are neglected in the model of previous studies. Actually, the reliability and predictability of numerical simulation will be greatly affected by these uncertainties. To begin with, uncertainties of modeling and simulation of detonation process is discussed based on the detonation mechanism. Initial density and detonation velocity of PBX-9502 are assumed to satisfy the logarithmic normal distribution. The probability density functions (PDFs) of initial density and detonation velocity are derived from Anderson-Darling hypothesis test and parameter estimation combined with real experimental data. Beta distribution is utilized to cope with empirical parameters which have no physical meaning at all, with shaping parameters and supporting set are given according to the engineer’s experience. Rosenblatt transformation is used to transform the dependent and non-Gaussian random variables into independent standard Gaussian random variables. Furthermore, nonintrusive polynomial chaos (PC) method is used to study high dimensional uncertainty propagation of detonation waves. In particular, as for one variable PC, orthogonal polynomials are derived through Gram-Schmidt algorithm in Gauss-Hilbert space, Gauss integral formula with six quadrature points is used to compute coefficients of PC. Full tensor product of quadratures and weights is applied in PC of multivariate. PDF and corresponding Gaussian statistics such as expectation, standard deviation and confidence interval of quantity of interest (QoI) are obtained from the multivariate polynomial chaos. The result shows that the variation of detonation pressure is larger and the range of confidential interval is wider. It coincides with Professor Chengwei Sun’s conclusion that “The discreteness of detonation pressure is larger in experimental measurement”. The experimental data falls into the confidential interval of QoIs, then the reliability and robustness of the modeling is enhanced. And the methodology can be extended to the detonation system with much more complex equation of state.
  • loading
  • [1]
    MADER C. Numerical modeling of explosives and propellants [M]. Boston: CRC Press, 2008.
    [2]
    LIANG X, WANG R L, GHANEM R. Uncertainty quantification of detonation through adapted polynomial chaos [J]. International Journal for Uncertainty Quantification, 2020, 10(1): 83–100. DOI: 10.1615/Int.J.UncertaintyQuantification.2020030630.
    [3]
    LIANG X, WANG R L. Verification and validation of detonation modeling [J]. Defence Technology, 2019, 15(3): 398–408. DOI: 10.1016/j.dt.2018.11.005.
    [4]
    董海山, 周芬芬. 高能炸药及相关物性能 [M]. 北京: 科学出版社, 1989.

    DONG H S, ZHOU F F. High explosive and its physical property [M]. Beijing: Scientific Press, 1989.
    [5]
    李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003.

    LI W X. One dimensional unstable flow and shock waves [M]. Beijing: National Defense Industrial Press, 2003.
    [6]
    孙锦山, 朱建士. 理论爆轰物理 [M]. 北京: 国防工业出版社, 1995.

    SUN J S, ZHU J S. Theoretical detonation physics [M]. Beijing: National Defense Industrial Press, 1995.
    [7]
    HANDLEY C, LAMBOURN B, WHITWORTH N et al. Understanding the shock and detonation response of high explosives at the continuum and meso scales [J]. Applied Physics Reviews, 2018, 5(1): 11303. DOI: 10.1063/1.5005997.
    [8]
    胡晓棉, 潘昊, 吴子辉. 气隙宽度对炸药爆轰过程的影响研究 [C] // 第四届全国计算爆炸力学会议. 2008: 329–333.

    HU X M, PAN H, WU Z H. The influence of gap width on the explosive detonation process [C] // 4th Conference on National Computational Detonation Mechanics. 2008: 329–333.
    [9]
    LEE E, TARVER C. Phenomenological model of shock initiation in heterogeneous explosives [J]. Physics of Fluids, 1980, 23(12): 2362–2371. DOI: 10.1063/1.862940.
    [10]
    DAVIS W, HILL L. Joints, cracks, holes, and gaps in detonating explosives [C] // 12th International Symposium Detonation. 2002: 11–23.
    [11]
    SOUERS P, LEWIS P, HOFFMAN M et al. Thermal expansion of LX-17, PBX 9502 and ultrafine TATB: LLNL-TR-457173 [R]. USA: Lawrence Livermore National Laboratory, 2010. DOI: 10.1002/prep.201000119.
    [12]
    WILLIAMS P. A simple reactive-flow model for corner-turning in insensitive high explosives, including failure and dead zones. Ⅰ. the model [J]. Propellants. Explosives, Pyrotechnics, 2020, 45(3): 1506–1522. DOI: 10.1002/prep.201900383.
    [13]
    HUGHES K, BALACHANDAR S, KIM N, et al. Forensic uncertainty quantification for experiments on the explosively driven motion of particles [J]. ASME Transaction. Journal of Verification, Validation and Uncertainty Quantification, 2018, 3(1): 041004. DOI: 10.1115/1.4043478.
    [14]
    梁霄, 陈江涛, 王瑞利. 高维参数不确定爆轰的不确定度量化 [J]. 兵工学报, 2020, 41(4): 692–701. DOI: 10.3969/j.issn.1000-1093.2020.04.008.

    LIANG X, CHEN J T, WANG R L. Uncertainty quantification of detonation with high-dimensional parameter uncertainty [J]. Acta Armamentarii, 2020, 41(4): 692–701. DOI: 10.3969/j.issn.1000-1093.2020.04.008.
    [15]
    戴诚达, 王翔, 谭华. Hugoniot实验的粒子速度测量不确定度分析 [J]. 高压物理学报, 2005, 19(2): 113–119. DOI: 10.11858/gywlxb.2005.02.003.

    DAI C D, WANG X, TAN H. Equation for uncertainty of particle velocity in Hugoniot measurements [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 113–119. DOI: 10.11858/gywlxb.2005.02.003.
    [16]
    HU X Z, DUAN Y H, WANG R L, LIANG X. An adaptive response surface methodology based on active subspaces for mixed random and interval uncertainties [J]. ASME Transaction Journal of Verification, Validation and Uncertainty Quantification, 2019, 4(1): 021006. DOI: 10.1115/1.4045200.
    [17]
    GHAUCH Z, AITHARAJU V, RODGERS W, et al. Integrated stochastic analysis of fiber composites manufacturing using adapted polynomial chaos expansions [J]. Composites Part A: Applied Science and Manufacturing, 2019, 118: 179–193. DOI: 10.1016/j.compositesa.2018.12.029.
    [18]
    TSILIFIS P, GHANEM R. Bayesian adaptation of chaos representations using variational inference and sampling on geodesics [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474: 11350. DOI: 10.1098/rspa.2018.0285.
    [19]
    WILKINS M. Computer simulation of dynamic phenomena [M]. New York: Springer Press, 1999.
    [20]
    CAMPBELL A. Diameter effect and failure diameter of a TATB-based explosive [J]. Propellants, Explosives, Pyrotechnics, 1984, 9(6): 183–187. DOI: 10.1002/prep.19840090602.
    [21]
    THACKER W, SRINIVASAN A, ISKANDARANI M, et al. Propagating boundary uncertainties using polynomial expansions [J]. Ocean Modeling, 2012, 43: 53–63. DOI: 10.1016/j.ocemod.2011.11.011.
    [22]
    ROSENBLATT W. Remarks on a multivariate transformation [J]. Annals of Mathematical Statistics, 1952, 23(3): 470–472. DOI: 10.1007/978-1-4419-8339-8_8.
    [23]
    孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.

    SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industrial Press, 2000.
    [24]
    MENIKOFF R. Complete EOS for PBX 9502: LA-UR-09-06S29 [R]. USA: Lawrence Livermore National Laboratory, 2009.
    [25]
    OBERKAMPF W, ROY C. Verification and validation in scientific computing [M]. New York: Cambridge University Press, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (160) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return