Citation: | LIANG Xiao, WANG Ruili, HU Xingzhi, CHEN Jiangtao. Uncertainty analysis of C-J detonation parameters based on polynomial chaos theory[J]. Explosion And Shock Waves, 2023, 43(10): 104202. doi: 10.11883/bzycj-2023-0030 |
[1] |
MADER C. Numerical modeling of explosives and propellants [M]. Boston: CRC Press, 2008.
|
[2] |
LIANG X, WANG R L, GHANEM R. Uncertainty quantification of detonation through adapted polynomial chaos [J]. International Journal for Uncertainty Quantification, 2020, 10(1): 83–100. DOI: 10.1615/Int.J.UncertaintyQuantification.2020030630.
|
[3] |
LIANG X, WANG R L. Verification and validation of detonation modeling [J]. Defence Technology, 2019, 15(3): 398–408. DOI: 10.1016/j.dt.2018.11.005.
|
[4] |
董海山, 周芬芬. 高能炸药及相关物性能 [M]. 北京: 科学出版社, 1989.
DONG H S, ZHOU F F. High explosive and its physical property [M]. Beijing: Scientific Press, 1989.
|
[5] |
李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003.
LI W X. One dimensional unstable flow and shock waves [M]. Beijing: National Defense Industrial Press, 2003.
|
[6] |
孙锦山, 朱建士. 理论爆轰物理 [M]. 北京: 国防工业出版社, 1995.
SUN J S, ZHU J S. Theoretical detonation physics [M]. Beijing: National Defense Industrial Press, 1995.
|
[7] |
HANDLEY C, LAMBOURN B, WHITWORTH N et al. Understanding the shock and detonation response of high explosives at the continuum and meso scales [J]. Applied Physics Reviews, 2018, 5(1): 11303. DOI: 10.1063/1.5005997.
|
[8] |
胡晓棉, 潘昊, 吴子辉. 气隙宽度对炸药爆轰过程的影响研究 [C] // 第四届全国计算爆炸力学会议. 2008: 329–333.
HU X M, PAN H, WU Z H. The influence of gap width on the explosive detonation process [C] // 4th Conference on National Computational Detonation Mechanics. 2008: 329–333.
|
[9] |
LEE E, TARVER C. Phenomenological model of shock initiation in heterogeneous explosives [J]. Physics of Fluids, 1980, 23(12): 2362–2371. DOI: 10.1063/1.862940.
|
[10] |
DAVIS W, HILL L. Joints, cracks, holes, and gaps in detonating explosives [C] // 12th International Symposium Detonation. 2002: 11–23.
|
[11] |
SOUERS P, LEWIS P, HOFFMAN M et al. Thermal expansion of LX-17, PBX 9502 and ultrafine TATB: LLNL-TR-457173 [R]. USA: Lawrence Livermore National Laboratory, 2010. DOI: 10.1002/prep.201000119.
|
[12] |
WILLIAMS P. A simple reactive-flow model for corner-turning in insensitive high explosives, including failure and dead zones. Ⅰ. the model [J]. Propellants. Explosives, Pyrotechnics, 2020, 45(3): 1506–1522. DOI: 10.1002/prep.201900383.
|
[13] |
HUGHES K, BALACHANDAR S, KIM N, et al. Forensic uncertainty quantification for experiments on the explosively driven motion of particles [J]. ASME Transaction. Journal of Verification, Validation and Uncertainty Quantification, 2018, 3(1): 041004. DOI: 10.1115/1.4043478.
|
[14] |
梁霄, 陈江涛, 王瑞利. 高维参数不确定爆轰的不确定度量化 [J]. 兵工学报, 2020, 41(4): 692–701. DOI: 10.3969/j.issn.1000-1093.2020.04.008.
LIANG X, CHEN J T, WANG R L. Uncertainty quantification of detonation with high-dimensional parameter uncertainty [J]. Acta Armamentarii, 2020, 41(4): 692–701. DOI: 10.3969/j.issn.1000-1093.2020.04.008.
|
[15] |
戴诚达, 王翔, 谭华. Hugoniot实验的粒子速度测量不确定度分析 [J]. 高压物理学报, 2005, 19(2): 113–119. DOI: 10.11858/gywlxb.2005.02.003.
DAI C D, WANG X, TAN H. Equation for uncertainty of particle velocity in Hugoniot measurements [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 113–119. DOI: 10.11858/gywlxb.2005.02.003.
|
[16] |
HU X Z, DUAN Y H, WANG R L, LIANG X. An adaptive response surface methodology based on active subspaces for mixed random and interval uncertainties [J]. ASME Transaction Journal of Verification, Validation and Uncertainty Quantification, 2019, 4(1): 021006. DOI: 10.1115/1.4045200.
|
[17] |
GHAUCH Z, AITHARAJU V, RODGERS W, et al. Integrated stochastic analysis of fiber composites manufacturing using adapted polynomial chaos expansions [J]. Composites Part A: Applied Science and Manufacturing, 2019, 118: 179–193. DOI: 10.1016/j.compositesa.2018.12.029.
|
[18] |
TSILIFIS P, GHANEM R. Bayesian adaptation of chaos representations using variational inference and sampling on geodesics [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474: 11350. DOI: 10.1098/rspa.2018.0285.
|
[19] |
WILKINS M. Computer simulation of dynamic phenomena [M]. New York: Springer Press, 1999.
|
[20] |
CAMPBELL A. Diameter effect and failure diameter of a TATB-based explosive [J]. Propellants, Explosives, Pyrotechnics, 1984, 9(6): 183–187. DOI: 10.1002/prep.19840090602.
|
[21] |
THACKER W, SRINIVASAN A, ISKANDARANI M, et al. Propagating boundary uncertainties using polynomial expansions [J]. Ocean Modeling, 2012, 43: 53–63. DOI: 10.1016/j.ocemod.2011.11.011.
|
[22] |
ROSENBLATT W. Remarks on a multivariate transformation [J]. Annals of Mathematical Statistics, 1952, 23(3): 470–472. DOI: 10.1007/978-1-4419-8339-8_8.
|
[23] |
孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.
SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industrial Press, 2000.
|
[24] |
MENIKOFF R. Complete EOS for PBX 9502: LA-UR-09-06S29 [R]. USA: Lawrence Livermore National Laboratory, 2009.
|
[25] |
OBERKAMPF W, ROY C. Verification and validation in scientific computing [M]. New York: Cambridge University Press, 2010.
|