Volume 44 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
ZHENG Kai, REN Jiale, SONG Chen, JIA Qianhang, XING Zhixiang. Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe[J]. Explosion And Shock Waves, 2024, 44(1): 012102. doi: 10.11883/bzycj-2023-0036
Citation: ZHENG Kai, REN Jiale, SONG Chen, JIA Qianhang, XING Zhixiang. Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe[J]. Explosion And Shock Waves, 2024, 44(1): 012102. doi: 10.11883/bzycj-2023-0036

Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe

doi: 10.11883/bzycj-2023-0036
  • Received Date: 2023-02-09
  • Rev Recd Date: 2023-04-07
  • Available Online: 2023-04-26
  • Publish Date: 2024-01-11
  • In order to investigate the effect of the pore density of copper foam and hydrogen volume fractions ($\varphi $) on the in-air-explosive characteristics of premixed syngas, copper foams with pore densities of 15, 25 and 40 ppi were fixed in a closed pipe (100 mm× 100 mm× 1000 mm) 500 mm from the ignition end. Correspondingly, the premixed syngas-air flame propagates in duct without copper foam was compared. The configuration, tip velocity and overpressure, etc. of the flame were observed by igniting the premixed syngas with equivalence ratio of 1 to the air and a wide range of hydrogen volume fractions (from 10% to 90%). Detailed flame evolution process was visualized by a high-speed camera and the overpressure was recorded by pressure transducer. The results indicates that the copper foam has a significant impact on flame propagation and overpressure-time history. Before the flame reaching the copper foam, its configuration and tip velocity, as well as the overpressure, are only determined by the fuel component, but not the foam, during its formation process to a tulip shape. The pore density and $\varphi $ affect not only the formation time of tulip flame, but also the appearance of distorted tulip flame. The copper foam could lead to the segmentation of flame front and transform the flame front from laminar to turbulence, resulting in the flame acceleration. This phenomenon becomes more evident with the decreasing of pore density. The presence of copper foam can increase the flame tip speed and overpressure significantly. For the case with a smaller pore density, both the maximum flame tip speed, growth of overpressure and maximum overpressure of premixed syngas-air increase with the $\varphi $.
  • loading
  • [1]
    刘义涛, 朱明辉, 杨子旭, 等. 煤制化学品: 合成气直接制低碳烯烃催化剂研究进展 [J]. 化工进展, 2021, 40(2): 594–604. DOI: 10.16085/j.issn.1000-6613.22020-1402.

    LIU Y T, ZHU M H, YANG Z X, et al. Advances of catalysts for direct synthesis of lower olefins from syngas [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 594–604. DOI: 10.16085/j.issn.1000-6613.22020-1402.
    [2]
    余明高, 韦贝贝, 郑凯. N2与CO2对合成气爆炸特性影响的实验研究 [J]. 爆炸与冲击, 2019, 39(6): 065401. DOI: 10.11883/bzycj-2018-0131.

    YU M G, WEI B B, ZHENG K. Effect of inert gas addition on syngas explosion [J]. Explosion and Shock Waves, 2019, 39(6): 065401. DOI: 10.11883/bzycj-2018-0131.
    [3]
    李艳超, 毕明树, 高伟. 耦合火焰自加速传播的氢气云爆炸超压预测 [J]. 爆炸与冲击, 2021, 41(7): 072101. DOI: 10.11883/bzycj-2020-0140.

    LI Y C, BI M S, GAO W. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation [J]. Explosion and Shock Waves, 2021, 41(7): 072101. DOI: 10.11883/bzycj-2020-0140.
    [4]
    倪靖, 潘剑锋, 姜超, 等. 掺氢比对甲烷-氧气爆轰特性的影响 [J]. 爆炸与冲击, 2020, 40(4): 042102. DOI: 10.11883/bzycj-2019-0237.

    NI J, PAN J F, JIANG C, et al. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas [J]. Explosion and Shock Waves, 2020, 40(4): 042102. DOI: 10.11883/bzycj-2019-0237.
    [5]
    张凯, 杜赛枫, 陈昊, 等. 泄爆和氮气惰化耦合作用对氢-空气爆炸影响的实验研究 [J]. 爆炸与冲击, 2022, 42(12): 125402. DOI: 10.11883/bzycj-2021-0459.

    ZHANG K, DU S F, CHEN H, et al. Experiments on the effects of venting and nitrogen inerting on hydrogen-air explosions [J]. Explosion and Shock Waves, 2022, 42(12): 125402. DOI: 10.11883/bzycj-2021-0459.
    [6]
    OLM C, ZSÉLY I G, VARGA T, et al. Comparison of the performance of several recent syngas combustion mechanisms [J]. Combustion and Flame, 2015, 162(5): 1793–1812. DOI: 10.1016/j.combustflame.2014.12.001.
    [7]
    ZHANG Y, SHEN W F, ZHANG H, et al. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames [J]. Fuel, 2015, 157: 115–121. DOI: 10.1016/j.fuel.2015.05.007.
    [8]
    BOUVET N, CHAUVEAU C, GÖKALP I, et al. Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(1): 913–920. DOI: 10.1016/j.proci.2010.05.088.
    [9]
    ZHANG Y, SHEN W F, FAN M, et al. Laminar flame speed studies of lean premixed H2/CO/air flames [J]. Combustion and Flame, 2014, 161(10): 2492–2495. DOI: 10.1016/j.combustflame.2014.03.016.
    [10]
    CAO W G, LI W J, ZHANG Y, et al. Experimental study on the explosion behaviors of premixed syngas-air mixtures in ducts [J]. International Journal of Hydrogen Energy, 2021, 46(44): 23053–23066. DOI: 10.1016/j.ijhydene.2021.04.120.
    [11]
    余明高, 栾鹏鹏, 郑凯, 等. 管道内预混合成气爆炸特性 [J]. 化工学报, 2018, 69(10): 4486–4494. DOI: 10.11949/j.issn.0438-1157.20180610.

    YU M G, LUAN P P, ZHENG K, et al. Characteristics of premixed syngas/air explosion in horizontal duct [J]. CIESC Journal, 2018, 69(10): 4486–4494. DOI: 10.11949/j.issn.0438-1157.20180610.
    [12]
    YU M G, LUAN P P, ZHENG K, et al. Experimental study on explosion characteristics of syngas with different ignition positions and hydrogen fraction [J]. International Journal of Hydrogen Energy, 2019, 44(29): 15553–15564. DOI: 10.1016/j.ijhydene.2019.04.046.
    [13]
    YANG X F, YU M G, ZHENG K, et al. On the propagation dynamics of lean H2/CO/air premixed flame [J]. International Journal of Hydrogen Energy, 2020, 45(11): 7210–7222. DOI: 10.1016/j.ijhydene.2019.12.116.
    [14]
    YANG X F, YU M G, ZHENG K, et al. An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct [J]. Fuel, 2020, 267: 117200. DOI: 10.1016/j.fuel.2020.117200.
    [15]
    HAN S X, YU M G, YANG X F, et al. Effects of obstacle position and hydrogen volume fraction on premixed syngas-air flame acceleration [J]. International Journal of Hydrogen Energy, 2020, 45(53): 29518–29532. DOI: 10.1016/j.ijhydene.2020.07.189.
    [16]
    DIAO S T, WEN X P, GUO Z D, et al. Experimental study of explosion dynamics of syngas flames in the narrow channel [J]. International Journal of Hydrogen Energy, 2022, 47(40): 17808–17820. DOI: 10.1016/j.ijhydene.2022.03.258.
    [17]
    YAO Z F, DENG H X, ZHAO W L, et al. Experimental study on explosion characteristics of premixed syngas/air mixture with different ignition positions and opening ratios [J]. Fuel, 2020, 279: 118426. DOI: 10.1016/j.fuel.2020.118426.
    [18]
    YU M G, YANG X F, ZHENG K, et al. Experimental study of premixed syngas/air flame deflagration in a closed duct [J]. International Journal of Hydrogen Energy, 2018, 43(29): 13676–13686. DOI: 10.1016/j.ijhydene.2018.05.103.
    [19]
    TRAN M V, SCRIBANO G, CHONG C T, et al. Experimental and numerical investigation of explosive behavior of syngas/air mixtures [J]. International Journal of Hydrogen Energy, 2018, 43(16): 8152–8160. DOI: 10.1016/j.ijhydene.2018.03.077.
    [20]
    段玉龙, 王硕, 贺森, 等. 多孔材料下气体爆炸转扩散燃烧的特性研究 [J]. 爆炸与冲击, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.

    DUAN Y L, WANG S, HE S, et al. Characteristics of gas explosion to diffusion combustion under porous materials [J]. Explosion and Shock Waves, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.
    [21]
    DUAN Y L, WANG S, YANG Y L, et al. Experimental study on methane explosion characteristics with different types of porous media [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104370. DOI: 10.1016/j.jlp.2020.104370.
    [22]
    SHAO H, WANG C, YU H K. Effect of copper foam on explosion suppression at different positions in the pipe [J]. Powder Technology, 2020, 360: 695–703. DOI: 10.1016/j.powtec.2019.09.078.
    [23]
    LONG F Y, DUAN Y L, YU S W, et al. Effect of porous materials on explosion characteristics of low ratio hydrogen/methane mixture in barrier tube [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104875. DOI: 10.1016/j.jlp.2022.104875.
    [24]
    WANG J, LIU G L, ZHENG L G, et al. Effect of opening blockage ratio on the characteristics of methane/air explosion suppressed by porous media [J]. Process Safety and Environmental Protection, 2022, 164: 129–141. DOI: 10.1016/j.psep.2022.06.008.
    [25]
    WU Q F, YU M G, ZHENG K. Experimental investigation on the effect of obstacle position on the explosion behaviors of the non-uniform methane/air mixture [J]. Fuel, 2022, 320: 123989. DOI: 10.1016/j.fuel.2022.123989.
    [26]
    XIAO H H, DUAN Q L, SUN J H. Premixed flame propagation in hydrogen explosions [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1988–2001. DOI: 10.1016/j.rser.2017.06.008.
    [27]
    CLANET C, SEARBY G. On the “tulip flame” phenomenon [J]. Combustion and Flame, 1996, 105(1/2): 225–238. DOI: 10.1016/0010-2180(95)00195-6.
    [28]
    ZHOU L, GAO D Z, ZHAO J F, et al. Turbulent flame propagation with pressure oscillation in the end gas region of confined combustion chamber equipped with different perforated plates [J]. Combustion and Flame, 2018, 191: 453–467. DOI: 10.1016/j.combustflame.2018.01.023.
    [29]
    CAO X Y, ZHOU Y Q, WANG Z R, et al. Experimental research on hydrogen/air explosion inhibition by the ultrafine water mist [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23898–23908. DOI: 10.1016/j.ijhydene.2022.05.165.
    [30]
    DUAN Y L, LONG F Y, HUANG J, et al. Effects of porous materials with different thickness and obstacle layout on methane/hydrogen mixture explosion with low hydrogen ratio [J]. International Journal of Hydrogen Energy, 2022, 47(63): 27237–27249. DOI: 10.1016/j.ijhydene.2022.06.065.
    [31]
    YANG X F, YU M G, ZHENG K, et al. An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air mixtures in a half-open duct [J]. Fuel, 2019, 237: 619–629. DOI: 10.1016/j.fuel.2018.10.055.
    [32]
    LI H W, GUO J, TANG Z S, et al. Effects of ignition, obstacle, and side vent locations on vented hydrogen-air explosions in an obstructed duct [J]. International Journal of Hydrogen Energy, 2019, 44(36): 20598–20605. DOI: 10.1016/j.ijhydene.2019.06.029.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (345) PDF downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return