Citation: | GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058 |
[1] |
曾文茹, 李疏芬, 周允基, 等. 聚甲基丙烯酸甲酯热氧化降解的化学动力学研究 [J]. 化学物理学报, 2003, 16(1): 64–68. DOI: 10.3969/j.issn.1674-0068.2003.01.013.
ZENG W R, LI S F, ZHOU Y J, et al. Chemical kinetics on thermal oxidative degradation of PMMA [J]. Chinese Journal of Chemical Physics, 2003, 16(1): 64–68. DOI: 10.3969/j.issn.1674-0068.2003.01.013.
|
[2] |
FATEH T, RICHARD F, ROGAUME T, et al. Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air [J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 423–433. DOI: 10.1016/j.jaap.2016.06.014.
|
[3] |
VIGNES A, KRIETSCH A, DUFAUD O, et al. Course of explosion behaviour of metallic powders: from micron to nanosize [J]. Journal of Hazardous Materials, 2019, 379: 120767. DOI: 10.1016/j.jhazmat.2019.120767.
|
[4] |
YUAN Z, KHAKZAD N, KHAN F, et al. Dust explosions: a threat to the process industries [J]. Process Safety and Environmental Protection, 2015, 98: 57–71. DOI: 10.1016/j.psep.2015.06.008.
|
[5] |
WEI L J, SU M Q, WANG K, et al. Suppression effects of ABC powder on explosion characteristics of hybrid C2H4/polyethylene dust [J]. Fuel, 2022, 310: 122159. DOI: 10.1016/j.fuel.2021.122159.
|
[6] |
AMYOTTE P R. Some myths and realities about dust explosions [J]. Process Safety and Environmental Protection, 2014, 92(4): 292–299. DOI: 10.1016/j.psep.2014.02.013.
|
[7] |
WANG Q H, YANG S P, JIANG J C, et al. Flame propagation and spectrum characteristics of CH4-air gas mixtures in a vertical pressure relief pipeline [J]. Fuel, 2022, 317: 123413. DOI: 10.1016/j.fuel.2022.123413.
|
[8] |
YANG J, LI Y H, YU Y, et al. Experimental investigation of the inerting effect of CO2 on explosion characteristics of micron-size Acrylate Copolymer dust [J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103979. DOI: 10.1016/j.jlp.2019.103979.
|
[9] |
YANG J, YU Y, LI Y H, et al. Inerting effects of ammonium polyphosphate on explosion characteristics of polypropylene dust [J]. Process Safety and Environmental Protection, 2019, 130: 221–230. DOI: 10.1016/j.psep.2019.08.015.
|
[10] |
ADDAI E K, GABEL D, KRAUSE U. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures [J]. Journal of Hazardous Materials, 2016, 307: 302–311. DOI: 10.1016/j.jhazmat.2016.01.018.
|
[11] |
JIANG H P, BI M S, PENG Q K, et al. Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4 [J]. Renewable Energy, 2020, 147: 2046–2055. DOI: 10.1016/j.renene.2019.10.026.
|
[12] |
HUANG C Y, CHEN X F, YUAN B H, et al. Suppression of wood dust explosion by ultrafine magnesium hydroxide [J]. Journal of Hazardous Materials, 2019, 378: 120723. DOI: 10.1016/j.jhazmat.2019.05.116.
|
[13] |
ZHANG X Y, GAO W, YU J L, et al. Flame propagation mechanism of nano-scale PMMA dust explosion [J]. Powder Technology, 2020, 363: 207–217. DOI: 10.1016/j.powtec.2019.12.056.
|
[14] |
ZHANG X Y, GAO W, YU J L, et al. Effect of flame propagation regime on pressure evolution of nano and micron PMMA dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 104037. DOI: 10.1016/j.jlp.2019.104037.
|
[15] |
ZHANG X Y, YU J L, YAN X Q, et al. Flame propagation behaviors of nano- and micro-scale PMMA dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 101–111. DOI: 10.1016/j.jlp.2015.12.010.
|
[16] |
ZHOU J H, LI B, MA D Q, et al. Suppression of nano-polymethyl methacrylate dust explosions by ABC powder [J]. Process Safety and Environmental Protection, 2019, 122: 144–152. DOI: 10.1016/j.psep.2018.11.023.
|
[17] |
ZHOU J H, JIANG H P, ZHOU Y H, et al. Flame suppression of 100 nm PMMA dust explosion by KHCO3 with different particle size [J]. Process Safety and Environmental Protection, 2019, 132: 303–312. DOI: 10.1016/j.psep.2019.10.027.
|
[18] |
GAN B, LI B, JIANG H P, et al. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives [J]. Journal of Hazardous Materials, 2018, 351: 346–355. DOI: 10.1016/j.jhazmat.2018.03.017.
|
[19] |
GAO W, MOGI T, SUN J H, et al. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber [J]. Fuel, 2013, 113: 86–96. DOI: 10.1016/j.fuel.2013.05.071.
|
[20] |
GAO W, ZHONG S J, MOGI T, et al. Study on the influence of material thermal characteristics on dust explosion parameters of three long-chain monobasic alcohols [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 186–196. DOI: 10.1016/j.jlp.2012.10.007.
|
[21] |
LIU A H, CHEN J Y, HUANG X F, et al. Explosion parameters and combustion kinetics of biomass dust [J]. Bioresource Technology, 2019, 294: 122168. DOI: 10.1016/j.biortech.2019.122168.
|
[22] |
LI Q Z, ZHANG G Y, ZHENG Y N, et al. Investigation on the correlations between thermal behaviors and explosion severity of aluminum dust/air mixtures [J]. Powder Technology, 2019, 355: 582–592. DOI: 10.1016/j.powtec.2019.07.090.
|
[23] |
JIANG H P, BI M S, GAO Z H, et al. Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions [J]. Energy, 2022, 239: 122246. DOI: 10.1016/j.energy.2021.122246.
|
[24] |
JIANG H P, BI M S, HUANG L, et al. Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions [J]. Energy, 2022, 239: 121987. DOI: 10.1016/j.energy.2021.121987.
|
[25] |
YAN X Q, YU J L. Dust explosion venting of small vessels at the elevated static activation overpressure [J]. Powder Technology, 2014, 261: 250–256. DOI: 10.1016/j.powtec.2014.04.043.
|
[26] |
Explosive atmospheres: Part 20-2: Material characteristics: Combustible dusts test methods: Technical Corrigendum 1: ISO/IEC 80079-20-2: 2016/Cor 1: 2017 [S]. Geneva: International Electrotechnical Commission, 2017.
|
[27] |
张公妍, 张延松, 陈昆, 等. 模式拟合法和无模式函数法对月桂酸热解行为及机理的研究 [J]. 日用化学工业, 2021, 51(4): 265–271. DOI: 10.3969/j.issn.1001-1803.2021.04.001.
ZHANG G Y, ZHANG Y S, CHEN K, et al. Study on the behavior and mechanism of pyrolysis of lauric acid by model-fitting and model-free methods [J]. China Surfactant Detergent & Cosmetics, 2021, 51(4): 265–271. DOI: 10.3969/j.issn.1001-1803.2021.04.001.
|
[28] |
ZHANG G Y, ZHANG Y S, HUANG X W, et al. Effect of pyrolysis and oxidation characteristics on lauric acid and stearic acid dust explosion hazards [J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 104039. DOI: 10.1016/j.jlp.2019.104039.
|
[29] |
曾文茹, 李疏芬, 周允基. 快速升温条件下聚甲基丙烯酸甲酯的燃烧机理 [J]. 高分子材料科学与工程, 2003, 19(6): 183–186. DOI: 10.16865/j.cnki.1000-7555.2003.06.047.
ZENG W R, LI S F, ZHOU Y J. Study of the combustion mechanism of poly (methyl methacrylate) [J]. Polymer Materials Science and Engineering, 2003, 19(6): 183–186. DOI: 10.16865/j.cnki.1000-7555.2003.06.047.
|