Volume 43 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
WEN Lei, FENG Wenjie, LI Mingye, KOU Zilong, WANG Liang, YU Junhong. Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks[J]. Explosion And Shock Waves, 2023, 43(11): 113103. doi: 10.11883/bzycj-2023-0061
Citation: WEN Lei, FENG Wenjie, LI Mingye, KOU Zilong, WANG Liang, YU Junhong. Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks[J]. Explosion And Shock Waves, 2023, 43(11): 113103. doi: 10.11883/bzycj-2023-0061

Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks

doi: 10.11883/bzycj-2023-0061
  • Received Date: 2023-02-27
  • Rev Recd Date: 2023-08-25
  • Available Online: 2023-08-25
  • Publish Date: 2023-11-17
  • In this experiment, finite size red sandstone containing pre-existing single crack was taken as the research object. The ratio of length to width of the samples was set about 0.65. The inclination angle of the pre-crack includes 0°, 30°, 45°, 60° and 90°. A split Hopkinson pressure bar was used for impact test, and a high-speed camera was used to record the crack propagation. The dynamic loads were applied along the width of the samples. Velocities of striker in impact tests were set as 6, 8 and 10 m/s by adjusting the pressure of the air gun. Acquisition frequency of the high-speed camera was set as 75000 s−1. The characteristics of crack propagation, dynamic compressive strength and dynamic elastic modulus of the samples were obtained. The fractal theory was used to describe the fragmentation characteristics of the samples. The relationship between dynamic mechanical properties, fragmentation characteristics and crack propagation under medium strain rate was discussed. The findings show that when the strain rate is high, more far-field cracks and separation cracks appear in the sample. In the range of medium strain rate, the failure mode and the number of cracks change differently with strain rate compared with the experimental results of low strain rate. The strain rate and the angle of pre-existing crack have a great influence on the crack propagation and failure mode of the samples. The crack propagation of the samples with different pre-existing crack is different. With the increase of strain rate, the failure mode of the sample becomes more complex, gradually evolving from critical failure with a tensile crack to complex failure mainly with X-shaped shear crack. When the angle of the pre-existing crack is fixed, the dynamic compressive strength and dynamic elastic modulus of the samples show obvious strain rate effect, and the pre-existing crack with different angles have significant influence on the strain rate sensitivity of the samples. With the increase of pre-existing crack angle, the variation of dynamic compressive strength, dynamic elastic modulus and fractal dimension of the samples show a certain similarity. In all types of samples, the dynamic compressive strength, dynamic elastic modulus and fractal dimension of the sample containing cracks with the inclination angle at 45° are the smallest. With the increase of strain rate, distribution of fragments becomes more dispersed. The higher the strain rate, the more significant the effect of the pre-existing crack on the fracture degree and fractal dimension of the samples.
  • loading
  • [1]
    赵程, 幸金权, 牛佳伦, 等. 水-力共同作用下预制裂隙类岩石试样裂纹扩展试验研究 [J]. 岩石力学与工程学报, 2019, 38(S1): 2823–2830. DOI: 10.13722/j.cnki.jrme.2018.1437.

    ZHAO C, XING J Q, NIU J L, et al. Experimental study on crack propagation of precrack rock-like specimens under hydro-mechanical coupling [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2823–2830. DOI: 10.13722/j.cnki.jrme.2018.1437.
    [2]
    李占金, 郝家旺, 甘德清, 等. 动载作用下磁铁矿石破坏特性实验研究 [J]. 振动与冲击, 2019, 38(12): 231–238, 245. DOI: 10.13465/j.cnki.jvs.2019.12.033.

    LI Z J, HAO J W, GAN D Q, et al. An experimental study on the failure characteristics of magnetite ore based on dynamic load [J]. Journal of Vibration and Shock, 2019, 38(12): 231–238, 245. DOI: 10.13465/j.cnki.jvs.2019.12.033.
    [3]
    杨圣奇, 戴永浩, 韩立军, 等. 断续预制裂隙脆性大理岩变形破坏特性单轴压缩试验研究 [J]. 岩石力学与工程学报, 2009, 28(12): 2391–2404. DOI: 10.3321/j.issn:1000-6915.2009.12.003.

    YANG S Q, DAI Y H, HAN L J, et al. Uniaxial compression experimental research on deformation and failure properties of brittle marble specimen with pre-existing fissures [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2391–2404. DOI: 10.3321/j.issn:1000-6915.2009.12.003.
    [4]
    张亮, 王桂林, 雷瑞德, 等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制 [J]. 中国公路学报, 2021, 34(1): 24–34. DOI: 10.3969/j.issn.1001-7372.2021.01.003.

    ZHANG L, WANG G L, LEI R D. Energy damage evolution mechanism of single jointed rock mass with different lengths under uniaxial compression [J]. China Journal of Highway and Transport, 2021, 34(1): 24–34. DOI: 10.3969/j.issn.1001-7372.2021.01.003.
    [5]
    HUANG J F, CHEN G L, ZHAO Y H, et al. An experimental study of the strain field development prior to failure of a marble plate under compression [J]. Tectonophysics, 1990, 175(1/2/3): 269–284. DOI: 10.1016/0040-1951(90)90142-U.
    [6]
    REISA J, DA SILVA NUNES L C, DA C MATTOS H S. Crack propagation analysis of polymer mortars brazilian disc specimens containing cracks under compressive line loading [J]. Advanced Materials Research, 2015, 1129: 429–437. DOI: 10.4028/www.scientific.net/AMR.1129.429.
    [7]
    ZHOU X P, CHENG H, FENG Y F. An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 1961–1986. DOI: 10.1007/s00603-013-0511-7.
    [8]
    易婷, 唐建新, 王艳磊. 裂隙倾角及数目对岩体强度和破坏模式的影响 [J]. 地下空间与工程学报, 2021, 17(1): 98–106, 134.

    YI T, TANG J X, WANG Y L. Effect of fracture dip angle and number on mechanical properties and failure modes of rock mass [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 98–106, 134.
    [9]
    刘华博, 赵毅鑫, 姜耀东, 等. 含预制单裂隙石膏裂纹孕育与能量演化的应变率效应研究 [J]. 实验力学, 2019, 34(3): 451–459. DOI: 10.7520/1001-4888-17-252.

    LIU H B, ZHAO Y X, JIANG Y D, et al. Strain rate effect on crack propagation and energy evolution of gypsum containing pre-existing single fracture [J]. Journal of Experimental Mechanics, 2019, 34(3): 451–459. DOI: 10.7520/1001-4888-17-252.
    [10]
    张天军, 景晨, 王喜娜, 等. 不同加载速率对含孔试样变形特性影响研究 [J]. 采矿与安全工程学报, 2021, 38(4): 847–856. DOI: 10.13545/j.cnki.jmse.2020.0254.

    ZHANG T J, JING C, WANG X N, et al. Experimental investigation of the effect of different loading rates on deformation characteristics of porous samples [J]. Journal of Mining and Safety Engineering, 2021, 38(4): 847–856. DOI: 10.13545/j.cnki.jmse.2020.0254.
    [11]
    于利强, 姚强岭, 徐强, 等. 加载速率影响下裂隙细砂岩裂纹扩展试验及数值模拟研究 [J]. 煤炭学报, 2021, 46(11): 3488–3501. DOI: 10.13225/j.cnki.jccs.2020.1529.

    YU L Q, YAO Q L, XU Q, et al. Experimental and numerical simulation study on crack propagation of fractured fine sandstone under the influence of loading rate [J]. Journal of China Coal Society, 2021, 46(11): 3488–3501. DOI: 10.13225/j.cnki.jccs.2020.1529.
    [12]
    谢和平, 彭瑞东, 鞠杨, 等. 岩石破坏的能量分析初探 [J]. 岩石力学与工程学报, 2005, 24(15): 2603–2608. DOI: 10.3321/j.issn:1000-6915.2005.15.001.

    XIE H P, PENG R D, JU Y, et al. On energy analysis of rock failure [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603–2608. DOI: 10.3321/j.issn:1000-6915.2005.15.001.
    [13]
    朱万成, 唐春安, 黄志平, 等. 静态和动态载荷作用下岩石劈裂破坏模式的数值模拟 [J]. 岩石力学与工程学报, 2005, 24(1): 1–7. DOI: 10.3321/j.issn:1000-6915.2005.01.001.

    ZHU W C, TANG C A, HUANG Z P, et al. Numerical simulation on splitting failure mode of rock under static and dynamic loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 1–7. DOI: 10.3321/j.issn:1000-6915.2005.01.001.
    [14]
    XIE B J, AI D H, YANG Y. Crack detection and evolution law for rock mass under SHPB impact tests [J]. Shock and Vibration, 2019, 2019: 3956749. DOI: 10.1155/2019/3956749.
    [15]
    AI D H, ZHAO Y C, WANG Q F, et al. Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test [J]. International Journal of Impact Engineering, 2019, 126: 135–146. DOI: 10.1016/j.ijimpeng.2019.01.001.
    [16]
    许金余, 刘石. 大理岩冲击加载试验碎块的分形特征分析 [J]. 岩土力学, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.

    XU J Y, LIU S. Research on fractal characteristics of marble fragments subjected to impact loading [J]. Rock and Soil Mechanics, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.
    [17]
    LI X B, ZHOU T, LI D Y. Dynamic strength and fracturing behavior of single-flawed prismatic marble specimens under impact loading with a split-Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2017, 50(1): 29–44. DOI: 10.1007/s00603-016-1093-y.
    [18]
    ZOU C J, WONG L N Y, LOO J J, et al. Different mechanical and cracking behaviors of single-flawed brittle gypsum specimens under dynamic and quasi-static loadings [J]. Engineering Geology, 2016, 201: 71–84. DOI: 10.1016/j.enggeo.2015.12.014.
    [19]
    LI D Y, HAN Z Y, SUN X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623–1643. DOI: 10.1007/s00603-018-1652-5.
    [20]
    YAN Z L, DAI F, LIU Y, et al. Numerical assessment of the rate-dependent cracking behaviours of single-flawed rocks in split Hopkinson pressure bar tests [J]. Engineering Fracture Mechanics, 2021, 247: 107656. DOI: 10.1016/j.engfracmech.2021.107656.
    [21]
    王奇智, 吴帮标, 刘丰, 等. 预制裂隙类岩石料板动态压缩破坏试验研究 [J]. 岩石力学与工程学报, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.

    WANG Q Z, WU B B, LIU F, et al. Dynamic failure of manufactured similar rock plate containing a single fissure [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.
    [22]
    李地元, 胡楚维, 朱泉企. 预制裂隙花岗岩动静组合加载力学特性和破坏规律试验研究 [J]. 岩石力学与工程学报, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.

    LI D Y, HU C W, ZHU Q Q. Experimental study on mechanical properties and failure laws of granite with an artificial flaw under coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.
    [23]
    洪亮, 李夕兵, 马春德, 等. 岩石动态强度及其应变率灵敏性的尺寸效应研究 [J]. 岩石力学与工程学报, 2008, 27(3): 526–533. DOI: 10.3321/j.issn:1000-6915.2008.03.012.

    HONG L, LI X B, MA C D, et al. Study on size effect of rock dynamic strength and strain rate sensitivity [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 526–533. DOI: 10.3321/j.issn:1000-6915.2008.03.012.
    [24]
    张旭龙, 张盛, 安定超, 等. 平行双裂缝圆盘试样裂纹扩展过程的尺寸效应试验研究 [J]. 岩石力学与工程学报, 2023, 42(1): 115–128. DOI: 10.13722/j.cnki.jrme.2021.1113.

    ZHANG X L, ZHANG S, AN D C, et al. Experimental study on the size effect of crack propagation process of disk samples containing parallel double pre-existing flaws [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1): 115–128. DOI: 10.13722/j.cnki.jrme.2021.1113.
    [25]
    DAI F, HUANG S, XIA K W, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 657–666. DOI: 10.1007/s00603-010-0091-8.
    [26]
    李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014.

    LI X B. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014.
    [27]
    鲁祖德. 裂隙岩石水-岩作用力学特性试验研究与理论分析 [D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2010.

    LU Z D. Experimental and theoretical analysis on mechanical properties of fractured rock under water-rock interaction [D]. Wuhan, Hubei, China: Graduate School of Chinese Academy of Sciences (Wuhan Institute of Geomechanics), 2010.
    [28]
    李银平, 杨春和. 裂纹几何特征对压剪复合断裂的影响分析 [J]. 岩石力学与工程学报, 2006, 25(3): 462–466. DOI: 10.3321/j.issn:1000-6915.2006.03.004.

    LI Y P, YANG C H. Influence of geometric characteristics of pre-existing cracks on mixed mode fractures under compression-shear loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 462–466. DOI: 10.3321/j.issn:1000-6915.2006.03.004.
    [29]
    李夕兵, 李海波, 王明洋, 等. 岩石动力特性实验规程: T/CSRME 001—2019 [S]. 北京: 中国岩石力学与工程学会, 2019.

    LI X B, LI H B, WANG M Y, et al. Technical specification for testing method of rock dynamic properties: T/CSRME 001—2019 [S]. Beijing, China: Chinese Society for Rock Mechanics and Engineering, 2019.
    [30]
    王春, 熊宏威, 舒荣华, 等. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征 [J]. 中国有色金属学报, 2022, 32(9): 2801–2818. DOI: 10.11817/j.ysxb.1004.0609.2022-36737.

    WANG C, XIONG H W, SHU R H, et al. Dynamic mechanical characteristic and damage-fracture behavior of deep copper-bearing skarn after high temperature treatment [J]. The Chinese Journal of Nonferrous Metals, 2022, 32(9): 2801–2818. DOI: 10.11817/j.ysxb.1004.0609.2022-36737.
    [31]
    李地元, 万千荣, 朱泉企, 等. 不同加载方式下含预制裂隙岩石力学特性及破坏规律试验研究 [J]. 采矿与安全工程学报, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.

    LI D Y, WAN Q R, ZHU Q Q, et al. Experimental study on mechanical properties and failure behaviour of fractured rocks under different loading methods [J]. Journal of Mining and Safety Engineering, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.
    [32]
    LI J C, LI N N, LI H B, et al. An SHPB test study on wave propagation across rock masses with different contact area ratios of joint [J]. International Journal of Impact Engineering, 2017, 105: 109–116. DOI: 10.1016/j.ijimpeng.2016.12.011.
    [33]
    张继春. 岩体爆破的块度理论及其应用 [M]. 成都: 西南交通大学出版社, 2001.

    ZHANG J C. Fragment-size theory of blasting in rock mass and its application [M]. Chengdu, Sichuan, China: Southwest Jiaotong University Press, 2001.
    [34]
    谢和平, 高峰, 周宏伟, 等. 岩石断裂和破碎的分形研究 [J]. 防灾减灾工程学报, 2003, 23(4): 1–9. DOI: 10.3969/j.issn.1672-2132.2003.04.001.

    XIE H P, GAO F, ZHOU H W, et al. Fractal fracture and fragmentation in rocks [J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(4): 1–9. DOI: 10.3969/j.issn.1672-2132.2003.04.001.
    [35]
    SHARAFISAFA M, ALIABADIAN Z, SHEN L M. Crack initiation and failure development in bimrocks using digital image correlation under dynamic load [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102688. DOI: 10.1016/j.tafmec.2020.102688.
    [36]
    张人凡, 朱哲明, 王飞, 等. 冲击载荷作用下黑砂岩动态断裂参数的分形修正 [J]. 爆炸与冲击, 2022, 42(7): 073101. DOI: 10.11883/bzycj-2022-0051.

    ZHANG R F, ZHU Z M, WANG F, et al. Fractal correction of dynamic fracture parameters of black sandstone under impact loads [J]. Explosion and Shock Waves, 2022, 42(7): 073101. DOI: 10.11883/bzycj-2022-0051.
    [37]
    武仁杰, 李海波, 李晓锋, 等. 冲击载荷作用下层状岩石破碎能耗及块度特征 [J]. 煤炭学报, 2020, 45(3): 1053–1060. DOI: 10.13225/j.cnki.jccs.2019.0266.

    WU R J, LI H B, LI X F, et al. Broken energy dissipation and fragmentation characteristics of layered rock under impact loading [J]. Journal of China Coal Society, 2020, 45(3): 1053–1060. DOI: 10.13225/j.cnki.jccs.2019.0266.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(9)

    Article Metrics

    Article views (273) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return