Citation: | CHEN Yandan, CHEN Xing, LU Yonggang, LIU Tong. Deformation and failure modes of IN718 alloy plateimpacted by spherical projectile at high velocity[J]. Explosion And Shock Waves, 2024, 44(2): 023301. doi: 10.11883/bzycj-2023-0071 |
[1] |
《中国航空材料手册》编辑委员会. 中国航空材料手册2: 变形高温合金、铸造高温合金 [M]. 北京: 中国标准出版社, 1989.
|
[2] |
CHEN Y D, HUA J Y, FAN D, et al. High-speed projectile perforation of nickel-based Inconel 718 superalloy plates: experiments and modeling [J]. Thin-Walled Structures, 2023, 192: 111181. DOI: 10.1016/j.tws.2023.111181.
|
[3] |
庄景云, 杜金辉, 邓群. 变形高温合金GH4169组织与性能 [M]. 北京: 冶金工业出版社, 2011: 1–3.
|
[4] |
HE Q, XUAN H J, LIU L L, et al. Perforation of aero-engine fan casing by a single rotating blade [J]. Aerospace Science and Technology, 2013, 25(1): 234–241. DOI: 10.1016/j.ast.2012.01.010.
|
[5] |
BIAN Y L, LIU Q, FENG Z D, et al. High-speed penetration dynamics of polycarbonate [J]. International Journal of Mechanical Sciences, 2022, 223: 107250. DOI: 10.1016/j.ijmecsci.2022.107250.
|
[6] |
HUA J Y, LIU Q, YANG H, et al. High-speed penetration of cast Mg-6Gd-3Y-0.5Zr alloy: experiments and modeling [J]. International Journal of Mechanical Sciences, 2023, 241: 107942. DOI: 10.1016/j.ijmecsci.2022.107942.
|
[7] |
LIU Q, HUA J Y, XU Y F, et al. Ballistic penetration of high-entropy CrMnFeCoNi alloy: experiments and modelling [J]. International Journal of Mechanical Sciences, 2023, 249: 108252. DOI: 10.1016/j.ijmecsci.2023.108252.
|
[8] |
SCIUVA M D, FROLA C, SALVANO S. Low and high velocity impact on Inconel 718 casting plates: ballistic limit and numerical correlation [J]. International Journal of Impact Engineering, 2003, 28(8): 849–876. DOI: 10.1016/S0734-743X(02)00156-2.
|
[9] |
SANG L J, LU J X, WANG J, et al. In-situ SEM study of temperature-dependent tensile behavior of Inconel 718 superalloy [J]. Journal of Materials Science, 2021, 56(28): 16097–16112. DOI: 10.1007/s10853-021-06256-8.
|
[10] |
ZHANG D Y, FENG Z, WANG C J, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting [J]. Materials Science and Engineering: A, 2018, 724: 357–367. DOI: 10.1016/j.msea.2018.03.073.
|
[11] |
邹品. GH4169高温动态本构模型与高速冲击性能研究 [D]. 南京: 南京航空航天大学, 2018.
ZOU P. Research on dynamic constitutive model at high temperatures and high speed impact performance of GH4169 [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
|
[12] |
宋宗贤. 基于SLM成形的Inconel718镍基高温合金超高周疲劳断裂机理研究 [D]. 太原: 太原科技大学, 2021. DOI: 10.27721/d.cnki.gyzjc.2021.000100.
SONG Z X. Study on ultrahigh cycle fatigue fracture mechanism of Inconel718 nickel-based superalloy formed by SLM [D]. Taiyuan: Taiyuan University of Science and Technology, 2021. DOI: 10.27721/d.cnki.gyzjc.2021.000100.
|
[13] |
王建国, 王红缨, 王连庆, 等. GH4169合金高温多轴低周疲劳寿命预测 [J]. 机械强度, 2008(2): 324–328. DOI: 10.16579/j.issn.1001.9669.2008.02.005.
WANG J G, WANG H Y, WANG L Q, et al. Fatigue life prediction for GH4169 superalloy under multi-axial cyclic loading at 650 °C [J]. Journal of Mechanical Strength, 2008(2): 324–328. DOI: 10.16579/j.issn.1001.9669.2008.02.005.
|
[14] |
LEE W S, LIN C F, CHEN T H, et al. Dynamic impact response of Inconel 718 alloy under low and high temperatures [J]. Materials Transactions, 2011, 52(9): 1734–1740. DOI: 10.2320/matertrans.M2011130.
|
[15] |
SHOCKEY D A, SIMONS J W, BROWN C S, et al. Shear failure of Inconel 718 under dynamic loads [J]. Experimental Mechanics, 2007, 47(6): 723–732. DOI: 10.1007/s11340-007-9068-2.
|
[16] |
KOBAYASHI T, SIMONS J W, BROWN C S, et al. Plastic flow behavior of Inconel 718 under dynamic shear loads [J]. International Journal of Impact Engineering, 2008, 35(5): 389–396. DOI: 10.1016/j.ijimpeng.2007.03.005.
|
[17] |
PEREIRA J M, LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. International Journal of Impact Engineering, 2001, 25(8): 715–733. DOI: 10.1016/S0734-743X(01)00018-5.
|
[18] |
ERICE B, PÉREZ-MARTÍN M J, GÁLVEZ F. An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy [J]. International Journal of Impact Engineering, 2014, 69: 11–24. DOI: 10.1016/j.ijimpeng.2014.02.007.
|
[19] |
LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012.
|
[20] |
刘焦, 郑百林, 杨彪, 等. 镍基合金薄板不同温度下的弹道冲击行为 [J]. 航空材料学报, 2019, 39(1): 79–88. DOI: 10.11868/j.issn.1005-5053.2018.000045.
LIU J, ZHENG B L, YANG B, et al. Ballistic impact behavior of thin nickel-base alloy plates at different temperatures [J]. Journal of Aeronautical Materials, 2019, 39(1): 79–88. DOI: 10.11868/j.issn.1005-5053.2018.000045.
|
[21] |
RODRÍGUEZ-MILLÁN M, DÍAZ-ÁLVAREZ A, BERNIER R, et al. Experimental and numerical analysis of conical projectile impact on Inconel 718 plates [J]. Metals, 2019, 9(6): 638. DOI: 10.3390/met9060638.
|
[22] |
吴轲. GH4169高温合金加筋结构机匣抗冲击能力研究 [D]. 南京: 南京航空航天大学, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000311.
WU K. Research on impact resistance of GH4169 casing in the form of stiffened structure [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000311.
|
[23] |
谭学明, 郭伟国, 林栋, 等. GCr15弹丸冲击不同厚度GH4169板的变形与破坏模式试验研究 [J]. 振动与冲击, 2022, 41(7): 199–206.
TAN X M, GUO W G, LIN D, et al. Tests for deformation and failure modes of GH4169 plates with different thickness under GCr15 projectile impact [J]. Journal of Vibration and Shock, 2022, 41(7): 199–206.
|
[24] |
KAWAI N, TSURUI K, HASEGAWA S, et al. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris [J]. Review of Scientific Instruments, 2010, 81(11): 115105. DOI: 10.1063/1.3498896.
|
[25] |
SHARMA P, CHANDEL P, BHARDWAJ V, et al. Ballistic impact response of high strength aluminium alloy 2014-T652 subjected to rigid and deformable projectiles [J]. Thin-Walled Structures, 2018, 126: 205–219. DOI: 10.1016/j.tws.2017.05.014.
|
[26] |
RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. DOI: 10.1115/1.3636566.
|
[27] |
邓云飞, 张伟, 曹宗胜, 等. 叠层顺序对双层A3钢薄板抗侵彻性能的影响 [J]. 爆炸与冲击, 2013, 33(3): 263–268. DOI: 10.11883/1001-1455(2013)03-0263-06.
DENG Y F, ZHANG W, CAO Z S, et al. Influences of layer order on ballistic resistance of double-layered thin A3 steel plates [J]. Explosion and Shock Waves, 2013, 33(3): 263–268. DOI: 10.11883/1001-1455(2013)03-0263-06.
|
[28] |
DENG Y F, WU H P, ZHANG Y, et al. Experimental and numerical study on the ballistic resistance of 6061-T651 aluminum alloy thin plates struck by different nose shapes of projectiles [J]. International Journal of Impact Engineering, 2022, 160: 104083. DOI: 10.1016/j.ijimpeng.2021.104083.
|
[29] |
RODRÍGUEZ-MILLÁN M, VAZ-ROMERO A, RUSINEK A, et al. Experimental study on the perforation process of 5754-H111 and 6082-T6 aluminium plates subjected to normal impact by conical, hemispherical and blunt projectiles [J]. Experimental Mechanics, 2014, 54(5): 729–742. DOI: 10.1007/s11340-013-9829-z.
|
[30] |
RODRIGUEZ-MILLÁN M, GARCIA-GONZALEZ D, RUSINEK A, et al. Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles [J]. Thin-Walled Structures, 2018, 123: 1–10. DOI: 10.1016/j.tws.2017.11.004.
|