Volume 44 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
HUI Yuzhong, XU Haojia, HAO Hongwei, SHEN Jianghua. Discontinuous impact fatigue failure model and microscopic mechanism of pure titanium under high strain-rate loading[J]. Explosion And Shock Waves, 2024, 44(1): 013103. doi: 10.11883/bzycj-2023-0073
Citation: HUI Yuzhong, XU Haojia, HAO Hongwei, SHEN Jianghua. Discontinuous impact fatigue failure model and microscopic mechanism of pure titanium under high strain-rate loading[J]. Explosion And Shock Waves, 2024, 44(1): 013103. doi: 10.11883/bzycj-2023-0073

Discontinuous impact fatigue failure model and microscopic mechanism of pure titanium under high strain-rate loading

doi: 10.11883/bzycj-2023-0073
  • Received Date: 2023-03-01
  • Rev Recd Date: 2023-07-20
  • Available Online: 2023-11-16
  • Publish Date: 2024-01-11
  • The fatigue failure behavior of structural materials under repeated impact loads has always attracted much attention. Mastering its damage accumulation process and evolution mechanism at the micro-scale is the fundamental way to understand the impact fatigue failure mechanism. Due to the complexity of the impact fatigue load itself and the limitations of the current experimental equipment, there are still major problems in the study of impact fatigue failure of materials. Therefore, pure titanium was used as the research object and a strain-controlled impact fatigue life test was designed based on the traditional split Hopkinson tension bar system. The strain-controlled impact fatigue life test was achieved by changing the length of the striker, and the amplitude of the incident wave needed to be kept at the same level when using different striker tests. The relationship between strain amplitude and impact fatigue life was analyzed. The impact fatigue interruption experiments of 5 times, 10 times and 20 times were carried out with 100 mm bullets. The microstructure of the samples after different impact times were characterized by electron backscatter diffraction (EBSD) and then the quasi-static mechanical properties were tested. The fracture morphology after impact fatigue failure was observed by scanning electron microscope (SEM). The cyclic hardening/softening law and its microscopic evolution mechanism of pure titanium during impact fatigue failure were studied. The results show that the strain-controlled impact fatigue life test can be realized by changing the striker length. The Manson-Coffin fatigue life model can better reflect the relationship between impact fatigue life and strain amplitude of pure titanium. Moreover, pure titanium exhibits cyclic hardening during impact fatigue failure, which is mainly due to the combined effect of fine grain strengthening caused by twin deformation and strain hardening caused by plastic deformation during fatigue. Finally, the impact fatigue damage of pure titanium is mainly manifested as the loss of deformation ability.
  • loading
  • [1]
    刘正, 胡冶昌, 魏志芳. 复进簧冲击疲劳应力响应及其寿命预测 [C] //首届兵器工程大会论文集. 2017: 52–57.
    [2]
    希弦. 微观航母之舰载机拦阻钩 [J]. 兵器知识, 2015(3): 72–75. DOI: 10.19437/j.cnki.11-1470/tj.2015.03.016.

    XI X. Arresting hook of carrier-based aircraft on aircraft carrier [J]. Ordnance Knowledge, 2015(3): 72–75. DOI: 10.19437/j.cnki.11-1470/tj.2015.03.016.
    [3]
    JOHNSON A A, STOREY R J. The impact fatigue properties of iron and steel [J]. Journal of Sound and Vibration, 2007, 308(3/4/5): 458–466. DOI: 10.1016/j.jsv.2007.06.044.
    [4]
    YANG S S, BAI C Y, YANG Q, et al. Review on impart fatigue of metallic materials and structures [J]. Aeronautical Science & Technology, 2021, 32(2): 1–13. DOI: 10.19452/j.issn1007-5453.2021.02.001.
    [5]
    JGUCHI K T H, TAIRA S. Failure mechanisms in impact fatigue of metals [J]. Fatigue and Fracture of Engineering Materials and Srrucfures, 1979, 2(2): 165–176. DOI: 10.1111/j.1460-2695.1979.tb01352.x.
    [6]
    NAKAYAMA H, TANAKA T. Impact fatigue crack growth behaviors of high strength low alloy steel [J]. International Journal of Fracture, 1984, 26(9): 19–24. DOI: 10.1007/BF01152319.
    [7]
    TANAKA T, KINOSHITA K, NAKAYAMA H. Fatigue crack growth and microscopic crack opening behaviour under impact fatigue load [J]. International Journal of Fatigue, 1989, 11(2): 117–123. DOI: 10.1016/0142-1123(89)90006-6.
    [8]
    YANG P, LIAO X, ZHU J, et al. High strain-rate low-cycle impact fatigue of a medium-carbon alloy steel [J]. International Journal of Fatigue, 1994, 16(5): 327–330. DOI: 10.1016/0142-1123(94)90270-4.
    [9]
    ZHANG M, YANG P S, TAN Y X, et al. An observation of crack initiation and early crack growth under impact fatigue loading [J]. Materials Science and Engineering: A, 1999, 271(1/2): 390–394. DOI: 10.1016/S0921-5093(99)00264-6.
    [10]
    李会会, 易丹青, 刘会群, 等. 硬质合金冲击疲劳行为的研究 [J]. 硬质合金, 2014, 31(2): 100–111. DOI: 10.3969/j.issn.1003-7292.2014.02.006.

    LI H H, YI D Q, LIU H Q, et al. Research on impact fatigue behaviour of cemented carbide [J]. Cemented Carbide, 2014, 31(2): 100–111. DOI: 10.3969/j.issn.1003-7292.2014.02.006.
    [11]
    陈鼎, 姚亮, 陈振华, 等. WC-Co类硬质合金的低周冲击疲劳性能研究 [J]. 稀有金属与硬质合金, 2017, 45(3): 71–76. DOI: CNKI:SUN:XYJY.0.2017-03-014.

    CHEN D, YAO L, CHEN Z H, et al. Study on low cycle impact fatigue performance of WC-Co cemented carbides [J]. Rare Metals and Cemented Carbides, 2017, 45(3): 71–76. DOI: CNKI:SUN:XYJY.0.2017-03-014.
    [12]
    STANTON L B. The resistance of materials to impact [J]. Proceedings of the Institute of Mechanical Engineers, 1908: 889–919. DOI: 10.1243/PIME_PROC_1908_075_019_02.
    [13]
    JOHNSON D J. The impact fatigue properties of pearlitic plain carbon steels [J]. Fatigue of and Fracture Engineering Materials and Structures, 1981, 4(3): 279–285. DOI: 10.1111/j.1460-2695.1981.tb01125.x.
    [14]
    JOHNSON A A. The low cycle impact fatigue properties of pearlitic plain carbon steels [J]. Fatigue and Fracture of Engineering Mateirals and Structures, 1985, 8(3): 287–294. DOI: 10.1111/j.1460-2695.1985.tb00428.x.
    [15]
    张遥辉. 钢铁材料冲击疲劳行为综述 [J]. 中国设备工程, 2020(6): 211–216. DOI: 10.3969/j.issn.1671-0711.2020.06.131.

    ZHANG Y H. Overview of impact fatigue behavior of steel materials [J]. China Plant Engineering, 2020(6): 211–216. DOI: 10.3969/j.issn.1671-0711.2020.06.131.
    [16]
    SUN Q, LIU X R, LIANG K. Impact fatigue life prediction for notched specimen of steel AerMet100 subjected to high strain rate loading [J]. International Journal of Applied Mechanics, 2018, 10(3): 1850030. DOI: 10.1142/s1758825118500308.
    [17]
    WANG B W, QIAN C C, BAI C Y, et al. Study on impact fatigue test and life prediction method of TC18 titanium alloy [J]. International Journal of Fatigue, 2023, 168: 1–17. DOI: 10.1016/j.ijfatigue.2022.107391.
    [18]
    GAO P F, LEI Z N, LI Y K, et al. Low-cycle fatigue behavior and property of TA15 titanium alloy with tri-modal microstructure [J]. Materials Science and Engineering: A, 2018, 736: 1–11. DOI: 10.1016/j.msea.2018.08.080.
    [19]
    张欠欠, 刘晓燕, 雷罗, 等. 工业纯钛的室温低周疲劳行为 [J]. 塑性工程学报, 2019, 26(2): 219–224. DOI: 10.3969/j.issn.1007-2012.2019.02.029.

    ZHANG Q Q, LIU X Y, LUO L, et al. Low-cycle fatigue behavior of commercially pure titanium at room temperature [J]. Journal of Plasticity Engineering, 2019, 26(2): 219–224. DOI: 10.3969/j.issn.1007-2012.2019.02.029.
    [20]
    CHANG L, LV C, KITAMURA T, et al. Slip dominated planar anisotropy of low cycle fatigue behavior of commercially pure titanium [J]. Materials Science and Engineering: A, 2022, 854(9):143807. DOI: 10.1016/j.msea.2022.143807.
    [21]
    SONG X P, CHEN G L, GU H C. Low cycle fatigue behavior of commercial purity titanium in liquid nitrogen [J]. International Journal of Fatigue, 2002, 24: 49–56. DOI: 10.1016/S0142-1123(01)00047-0.
    [22]
    ABDUL-LATIF A. Continuum damage model for low-cycle fatigue of metals: an overview [J]. International Journal of Damage Mechanics, 2021, 30(7): 1036–1078. DOI: 10.1177/1056789521991620.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (181) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return