Volume 43 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
SUN Chengwei, LU Yu, ZHAO Jibo, LUO Binqiang, GU Zhuowei, WANG Guiji, ZHANG Xuping, CHEN Xuemiao, ZHOU Zhongyu, LI Mu, YUAN Hong, ZHANG Hongping, WANG Ganghua, SUN Qizhi, WEN Shanggang, TAN Fuli, ZHAO Jianheng, MO Jianjun, CAI Jintao, JIN Yunsheng, HE Jia, CHONG Tao, ZHAO Xiaoming, LIU Cangli. SSS-MHD: a one-dimensional magneto-hydrodynamics multi-physics simulation platform for magnetically-driven high-energy-density dynamics experiments[J]. Explosion And Shock Waves, 2023, 43(10): 104201. doi: 10.11883/bzycj-2023-0127
Citation: SUN Chengwei, LU Yu, ZHAO Jibo, LUO Binqiang, GU Zhuowei, WANG Guiji, ZHANG Xuping, CHEN Xuemiao, ZHOU Zhongyu, LI Mu, YUAN Hong, ZHANG Hongping, WANG Ganghua, SUN Qizhi, WEN Shanggang, TAN Fuli, ZHAO Jianheng, MO Jianjun, CAI Jintao, JIN Yunsheng, HE Jia, CHONG Tao, ZHAO Xiaoming, LIU Cangli. SSS-MHD: a one-dimensional magneto-hydrodynamics multi-physics simulation platform for magnetically-driven high-energy-density dynamics experiments[J]. Explosion And Shock Waves, 2023, 43(10): 104201. doi: 10.11883/bzycj-2023-0127

SSS-MHD: a one-dimensional magneto-hydrodynamics multi-physics simulation platform for magnetically-driven high-energy-density dynamics experiments

doi: 10.11883/bzycj-2023-0127
  • Received Date: 2023-04-10
  • Rev Recd Date: 2023-09-17
  • Publish Date: 2023-10-27
  • The research on generation and properties of materials under ultra-high pressure and density constitutes an important part of the extreme physics and hence a field of modern frontier science, especially the magnetically-driven high-energy-density physics herein is meaningful and in great need by core technologies. High pulsed power devices with tens-megampere output current and thousands-Tesla magnetic field were developed in past decades, e.g., the Z machine capable of 30 MA and 100 TW on load at the Sandia National Laboratories, USA; also a record intense magnetic field of 2800 T achieved with a cascade magneto-cumulative generator of MC-1 type at VNIIEF, Russia. It is available now to compress heavy metals up to 1 TPa or to launch thin Al flyer plates to super high speed over 45 km/s using isentropic compression experiments on the Z machine. Although these experiments take various forms, they have intrinsic unity in physics, which is based on the conservation laws of mechanics and the macroscopic electromagnetic theory. Therefore, it is feasible and necessary to establish a unified numerical simulation platform and determine the mechanical motion of the load configuration and its coupling with various physical fields under extreme experimental conditions by relying on the load current data (or the real data of the drive circuit). The magneto-hydrodynamics multi-physics codes have been successfully developed in USA, e.g., the excellent performance codes—ALEGRA series at the Sandia National Laboratories. This paper substantively extends the one-dimensional Lagrangian code SSS, which has been extensively validated by shock, detonation and laser radiation effect simulations, into a magneto-hydrodynamics multi-physics one and now it is renamed as SSS-MHD. The simulation results of various high-energy-density dynamic experiments with typical significance, such as planar quasi-isentropic ramp wave compression, ultra-high speed solid flyer launch, solid liner implosion, and explosively-driven magnetic flux compression, indicate that their relative deviations of the SSS-MHD simulations from the experimental data of America’s Z machine, China’s CQ and CJ series devices, and ALEGRA-1D/2D calculations are generally less than 5%. The SSS-MHD code turns into a powerful platform to simulate experiments of extreme material dynamics (including gases, liquids, metals and compounds) and its practice could be helpful to develop advanced multi-dimensional MHD multi-physics codes.
  • loading
  • [1]
    HATFIELD P W, GAFFNEY J A, ANDERSON G J, et al. The data-driven future of high-energy-density physics [J]. Nature, 2021, 593(7859): 351–361. DOI: 10.1038/s41586-021-03382-w.
    [2]
    DRAKE R P. 高能量密度物理: 基础、惯性约束聚变和实验天体物理学 [M]. 孙承纬, 译. 北京: 国防工业出版社, 2013.
    [3]
    孙承纬. 电磁加载下的高能量密度物理问题研究 [J]. 高能量密度物理, 2007(1): 41–46.
    [4]
    孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用 [J]. 力学进展, 2012, 42(2): 206–219. DOI: 10.6052/1000-0992-2012-2-20120208.

    SUN C W, ZHAO J H, WANG G J, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching [J]. Advances in Mechanics, 2012, 42(2): 206–219. DOI: 10.6052/1000-0992-2012-2-20120208.
    [5]
    OLIPHANT T A, WITTE K H. RAVEN code: LA-10826 [R]. USA: Los Alamos National Laboratory, 1987.
    [6]
    ROBINSON A C, BRUNNER T A, CARROLL S, et al. ALEGRA: an arbitrary lagrangian-eulerian multimaterial, multiphysics code [C] // Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA, 2008: 1235. DOI: 10.2514/6.2008-1235.
    [7]
    孙承纬. 一维冲击波和爆轰波计算程序SSS [J]. 计算物理, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.

    SUN C W. SSS: a code for computing one dimensional shock and detonation wave propagation [J]. Chinese Journal of Computational Physics, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.
    [8]
    GU Z W, SUN C W, ZHAO J H, et al. One-dimensional numerical simulation of laser-driven flyer plates [J]. Journal of Applied Physics, 2004, 96(6): 3486–3490. DOI: 10.1063/1.1781765.
    [9]
    YUAN H, TONG H F, LI M, et al. Computational study of nanosecond pulsed laser ablation and the application to momentum coupling [J]. Journal of Applied Physics, 2012, 112: 023105. DOI: 10.1063/1.4737188.
    [10]
    刘启泰, 孙承纬, 胡熙静. SSS程序在电磁内爆中的数值模拟 [J]. 高压物理学报, 2004, 18(2): 183–187. DOI: 10.11858/gywlxb.2004.02.015.

    LIU Q T, SUN C W, HU X J. The numerical simulation of solid liner implosion in SSS code [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 183–187. DOI: 10.11858/gywlxb.2004.02.015.
    [11]
    贺佳, 赵剑衡, 谭福利, 等. 电爆炸箔驱动绝缘飞片的一维数值模拟 [J]. 高压物理学报, 2009, 23(6): 476–480. DOI: 10.11858/gywlxb.2009.06.013.

    HE J, ZHAO J H, TAN F L, et al. One-dimensional numerical simulation of a flyer accelerated by electrically exploded metal foil [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 476–480. DOI: 10.11858/gywlxb.2009.06.013.
    [12]
    孙承纬, 赵剑衡, 刘仓理, 等. 材料准等熵压缩实验研究进展 [M]. 北京: 中国原子能出版社, 2015.
    [13]
    孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵压缩和高速飞片的实验研究 [C] // 庆祝中国力学学会成立50周年暨中国力学学会学术大会. 北京, 2007: 17.
    [14]
    赵继波, 孙承纬, 罗斌强, 等. 磁驱动等熵压缩实验构形的磁流体力学计算模拟 [J]. 力学学报, 2014, 46(5): 685–693. DOI: 10.6052/0459-1879-14-019.

    ZHAO J B, SUN C W, LUO B Q, et al. Magneto-hydrodynamics modeling of configurations in magnetically driven isentropic compression experiments [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 685–693. DOI: 10.6052/0459-1879-14-019.
    [15]
    赵继波, 孙承纬, 谷卓伟, 等. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析 [J]. 物理学报, 2015, 64(8): 080701. DOI: 10.7498/aps.64.080701.

    ZHAO J B, SUN C W, GU Z W, et al. Magneto-hydrodynamic calculation of magnetic flux compression with explosion driven solid liners and analysis of quasi-isentropic process [J]. Acta Physica Sinica, 2015, 64(8): 080701. DOI: 10.7498/aps.64.080701.
    [16]
    ZHAO J B, SUN C W, LUO B Q, et al. Loading circuit coupled magnetohydrodynamic simulation of sample configurations in isentropic compression experiments [J]. IEEE Transactions on Plasma Science, 2015, 43(4): 1068–1076. DOI: 10.1109/TPS.2015.2405575.
    [17]
    王桂吉, 罗斌强, 陈学秒, 等. 磁驱动平面准等熵加载装置、实验技术及应用研究新进展 [J]. 爆炸与冲击, 2021, 41(12): 121403. DOI: 10.11883/bzycj-2021-0119.

    WANG G J, LUO B Q, CHEN X M, et al. Recent progress on the experimental facilities, techniques and applications of magnetically driven quasi-isentropic compression [J]. Explosion and Shock Waves, 2021, 41(12): 121403. DOI: 10.11883/bzycj-2021-0119.
    [18]
    罗斌强, 陈学秒, 王桂吉, 等. 磁驱动压-剪联合加载下材料动态强度的直接测量 [J]. 中国科学: 物理学 力学 天文学, 2016, 46(11): 114601. DOI: 10.1360/SSPMA2016-00184.

    LUO B Q, CHEN X M, WANG G J, et al. 磁驱动压-Direct measurement of material dynamic strength under high pressure using magnetically driven pressure-shear loading [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2016, 46(11): 114601. DOI: 10.1360/SSPMA2016-00184.
    [19]
    LUO B Q, SUN C W, ZHAO J H, et al. Unified numerical simulation of metallic foil electrical explosion and its applications [J]. IEEE Transactions on Plasma Science, 2013, 41(1): 49–57. DOI: 10.1109/TPS.2012.2227827.
    [20]
    LUO B Q, WANG G J, MO J J, et al. Verification of conventional equations of state for tantalum under quasi-isentropic compression [J]. Journal of Applied Physics, 2014, 116: 193506. DOI: 10.1063/1.4902064.
    [21]
    ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85: 055110. DOI: 10.1063/1.4875705.
    [22]
    ZHAO X M, SUN C W, SUN Q Z, et al. Simulation on the compressed field-reversed configuration with alpha particle self-heating [J]. Plasma Physics and Controlled Fusion, 2019, 61(7): 075015. DOI: 10.1088/1361-6587/ab1e84.
    [23]
    REINOVSKY R E, ATCHISON W L, DIMONTE G, et al. Pulsed-power hydrodynamics: an application of pulsed-power and high magnetic fields to the exploration of material properties and problems in experimental hydrodynamics [J]. IEEE Transactions on Plasma Science, 2008, 36(1): 112–124. DOI: 10.1109/TPS.2007.914708.
    [24]
    SINARS D B, SWEENEY M A, ALEXANDER C S, et al. Review of pulsed power-driven high energy density physics research on Z at Sandia [J]. Physics of Plasmas, 2020, 27(7): 070501. DOI: 10.1063/5.0007476.
    [25]
    SLUTZ S A, STYGAR W A, GOMEZ M R, et al. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators [J]. Physics of Plasmas, 2016, 23(2): 3933. DOI: 10.1063/1.4941100.
    [26]
    吴其芬, 李桦. 磁流体力学 [M]. 长沙: 国防科技大学出版社, 2007: 23–31.
    [27]
    JOHNSON J D. The Sesame database [C] // Proceedings of the 12th Symposium on Thermophysics Properties. Boulder, Colorado, USA, 1994: 1–12.
    [28]
    STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799.
    [29]
    赵继波. 一维磁流体动力学程序SSS-MHD研究和实验构形模拟计算 [D]. 四川绵阳:中国工程物理研究院, 2014: 78.

    ZHAO J B. Research on one-dimensional magneto-hydrodynamics code SSS-MHD and simulation on confingurations on experiments [D]. Mianyang, Sichuan, China: China Academy of Engineering Physics, 2014: 78.
    [30]
    陆禹. 柱筒构型的电磁内爆、压缩实验与磁流体力学数值模拟 [D]. 合肥: 中国科学技术大学, 2022: 26–29.

    LU Y. Experiments and MHD simulations on magnetically diriven implosion and compression of cylindrical configurations [D]. Hefei, Anhui, China: China University of Science and Technology, 2022: 26–29.
    [31]
    黄奕勇, 李星辰, 田野, 等. COMSOL多物理场仿真入门指南 [M]. 北京: 机械工业出版社, 2021.
    [32]
    LEMKE R W, KNUDSON M D, ROBINSON A C, et al. Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates [J]. Physics of Plasmas, 2003, 10(5): 1867–1874. DOI: 10.1063/1.1557530.
    [33]
    VOGLER T J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading [J]. International Journal of Plasticity, 2009, 25(4): 671–694. DOI: 10.1016/j.ijplas.2008.12.003.
    [34]
    LEMKE R W, DOLAN D H, DALTON D G, et al. Probing off-Hugoniot states in Ta, Cu, and Al to 1000GPa compression with magnetically driven liner implosions [J]. Journal of Applied Physics, 2016, 119(1): 015904. DOI: 10.1063/1.4939675.
    [35]
    WANG G J, SUN C W, TAN F L, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments [J]. Review of Scientific Instruments, 2008, 79: 053904. DOI: 10.1063/1.2920200.
    [36]
    LEMKE R W, KNUDSON M D, DAVIS J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. DOI: 10.1016/j.ijimpeng.2010.10.019.
    [37]
    ALTGILBERS L L. 磁通量压缩发生器 [M]. 孙承纬, 译. 北京: 国防工业出版社, 2008: 1–5.
    [38]
    谷卓伟, 罗浩, 张恒第, 等. 炸药柱面内爆磁通量压缩实验技术研究 [J]. 物理学报, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.

    GU Z W, LUO H, ZHANG H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion [J]. Acta Physica Sinica, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.
    [39]
    ZHOU Z Y, GU Z W, LUO H, et al. A compact explosive-driven flux compression generator for reproducibly generating multimegagauss fields [J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3279–3283. DOI: 10.1109/TPS.2018.2794761.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (285) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return