Citation: | LIU Junwei, ZHANG Xianfeng, LIU Chuang, WANG Jiamin, XIONG Wei, TAN Mengting, XIAO Chuan. Influencing factors of penetration performance of an elliptical cross-section projectile[J]. Explosion And Shock Waves, 2023, 43(9): 091409. doi: 10.11883/bzycj-2023-0132 |
[1] |
王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
|
[2] |
DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
|
[3] |
DONG H, WU H J, LIU Z H, et al. Penetration characteristics of pyramidal projectile into concrete target [J]. International Journal of Impact Engineering, 2020, 143: 103583. DOI: 10.1016/j.ijimpeng.2020.103583.
|
[4] |
王浩, 武海军, 闫雷, 等. 椭圆横截面弹体斜贯穿双层间隔薄钢板失效模式 [J]. 兵工学报, 2020, 41(S2): 1–11. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.
WANG H, WU H J, YAN L, et al. Failure mode of oblique perforation of truncated ogive-nosed projectiles with elliptic cross-section into double-layered thin steel plate with gap space [J]. Acta Armamentarii, 2020, 41(S2): 1–11. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.
|
[5] |
王浩, 潘鑫, 武海军, 等. 椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析 [J]. 爆炸与冲击, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.
WANG H, PAN X, WU H J, et al. Energy dissipation analysis of elliptical truncated oval rigid projectile penetrating stiffened plate [J]. Explosion and Shock Waves, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.
|
[6] |
田泽, 王浩, 武海军, 等. 椭圆变截面弹体斜贯穿薄靶姿态偏转机理 [J]. 兵工学报, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.
TIAN Z, WANG H, WU H J, et al. Attitude deflection mechanism of projectiles with variable elliptical cross-sections obliquely perforating thin targets [J]. Acta Armamentarii, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.
|
[7] |
邓希旻, 田泽, 武海军, 等. 上下非对称结构弹体侵彻金属薄板的特性及薄板破坏形式 [J/OL]. 兵工学报, (2022-11-02) [2023-04-10]. http://www.co-journal.com/CN/ 10.12382/bgxb.2022.0724. DOI: 10.12382/bgxb.2022.0724.
DENG X W, TIAN Z, WU H J, et al. Penetration characteristics and plate failure modes of asymmetric shaped projectiles penetrating thin metal targets [J/OL]. Acta Armamentarii, (2022-11-02) [2023-04-10]. http://www.co-journal.com/CN/ 10.12382/bgxb.2022.0724. DOI: 10.12382/bgxb.2022.0724.
|
[8] |
DAI X H, WANG K H, LI M R, et al. Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets [J]. Defence Technology, 2021, 17(3): 800–811. DOI: 10.1016/j.dt.2020.05.011.
|
[9] |
刘子豪, 武海军, 高旭东, 等. 椭圆截面弹体侵彻混凝土阻力特性研究 [J]. 北京理工大学学报, 2019, 39(2): 135–141, 146. DOI: 10.15918/j.tbit1001-0645.2019.02.005.
LIU Z H, WU H J, GAO X D, et al. Study on the resistance characteristics of elliptical cross-section projectile penetrating concrete [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 135–141, 146. DOI: 10.15918/j.tbit1001-0645.2019.02.005.
|
[10] |
LIU J W, ZHANG X F, WEI H Y, et al. Study on the penetration of elliptical cross-section projectiles into concrete targets: theory and experiment [J]. Latin American Journal of Solids and Structures, 2022, 19: 1–23. DOI: 10.1590/1679-78256939.
|
[11] |
LIU J W, LIU C, ZHANG X F, et al. Research on the penetration characteristics of elliptical cross-section projectile into semi-infinite metal targets [J]. International Journal of Impact Engineering, 2023, 173: 104438. DOI: 10.1016/j.ijimpeng.2022.104438.
|
[12] |
MA X H, ZHANG Q M, ZHANG X W. A model for rigid asymmetric ellipsoidal projectiles penetrating into metal plates [J]. International Journal of Impact Engineering, 2022, 163: 104140. DOI: 10.1016/j.ijimpeng.2021.104140.
|
[13] |
魏海洋, 张先锋, 熊玮, 等. 椭圆截面弹体斜侵彻金属靶体弹道研究 [J]. 爆炸与冲击, 2022, 42(2): 023304. DOI: 10.11883/bzycj-2021-0291.
WEI H Y, ZHANG X F, XIONG W, et al. Oblique penetration of elliptical cross-section projectile into metal target [J]. Explosion and Shock Waves, 2022, 42(2): 023304. DOI: 10.11883/bzycj-2021-0291.
|
[14] |
谭远深, 黄风雷, 皮爱国. 椭圆截面侵彻弹体结构优化设计与结构响应 [J]. 爆炸与冲击, 2022, 42(6): 063301. DOI: 10.11883/bzycj-2021-0436.
TAN Y S, HUANG F L, PI A G. Structural optimization design and structural response of elliptical-section penetration projectiles [J]. Explosion and Shock Waves, 2022, 42(6): 063301. DOI: 10.11883/bzycj-2021-0436.
|
[15] |
刘均伟, 张先锋, 赵瑶瑶, 等. 在椭圆横截面弹体正侵彻下有限厚铝靶的破坏模式及响应特性 [J]. 爆炸与冲击, 2022, 42(12): 123301. DOI: 10.11883/bzycj-2022-0249.
LIU J W, ZHANG X F, ZHAO Y Y, et al. Failure modes and response characteristics of finite-thickness aluminum targets under normal penetration of elliptical cross-section projectiles [J]. Explosion and Shock Waves, 2022, 42(12): 123301. DOI: 10.11883/bzycj-2022-0249.
|
[16] |
BISHOP R F, HILL R, MOTT N F. The theory of indentation and hardness tests [J]. Proceedings of the Physical Society, 1945, 57(3): 147–159. DOI: 10.1088/0959-5309/57/3/301.
|
[17] |
SATAPATHY S, BIESS S. Deep punching PMMA [J]. Experimental Mechanical, 2000, 4: 7–31. DOI: 10.1007/BF02327545.
|
[18] |
TAMAGNA A, RIERA J D. Low speed penetration in solids [J]. Nuclear Engineering and Design, 1998, 179: 125–133. DOI: 10.1016/S0029-5493(97)00272-0.
|
[19] |
WRIGHT S C, HUANG Y, FLECK N A. Deep penetration of polycarbonate by a cylindrical punch [J]. Mechanics of Materials, 1992, 13(4): 277–284. DOI: 10.1016/0167-6636(92)90020-E.
|
[20] |
ROSENBERG Z, KOSITSKI R. Deep indentation and terminal ballistics of polycarbonate [J]. International Journal of Impact Engineering, 2017, 103: 225–230. DOI: 10.1016/j.ijimpeng.2017.01.018.
|
[21] |
ROSENBERG Z, DEKEL E. The penetration of rigid long rods [J]. International Journal of Impact Engineering, 2009, 36(4): 551–564. DOI: 10.1016/j.ijimpeng.2008.06.001.
|
[22] |
ROSENBERG Z, DEKEL E. A comment on “The effect of target inertia on the penetration of aluminum targets by rigid ogive-nosed long rods” by T. L. Warren, Int. J. Impact Eng. 2016 [J]. International Journal of Impact Engineering, 2016, 93: 231–233. DOI: 10.1016/j.ijimpeng.2016.02.009.
|
[23] |
FORRESTAL M J, LUK V K, WATTS H A. Penetration of reinforced concrete with ogive-nose penetrators [J]. International Journal of Solids and Structures, 1988, 24(1): 77–87. DOI: 10.1016/0020-7683(88)90100-x.
|
[24] |
HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743x(92)90282-x.
|
[25] |
FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
|
[26] |
FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
|
[27] |
FORRESTAL M J, HANCHAK S J. Penetration limit velocity for ogive-nose projectiles and limestone targets [J]. Journal of Applied Mechanics, 2002, 69(6): 853–854. DOI: 10.1115/1.1480820.
|
[28] |
JONES S E, RULE W K, JEROME D M, et al. On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction [J]. International Journal of Impact Engineering, 2000, 24(4): 403–415. DOI: 10.1016/S0734-743X(99)00157-8.
|
[29] |
FORRESTAL M J, LUK V K, ROSENBERG Z, et al. Penetration of 7075-T651 aluminum targets with ogival-nose rods [J]. International Journal of Solids and Structures, 1992, 29(14/15): 1729–1736. DOI: 10.1016/0020-7683(92)90166-Q.
|
[30] |
CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
|
[31] |
LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
|
[32] |
FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584–1594. DOI: 10.1016/j.ijimpeng.2005.01.012.
|
[33] |
FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics and Materials, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
|