Citation: | MA Sizhou, LIU Kewei, YANG Jiacai, LI Xudong, GUO Tengfei. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress[J]. Explosion And Shock Waves, 2023, 43(10): 105201. doi: 10.11883/bzycj-2023-0151 |
[1] |
LI X B, GONG F Q, TAO M, et al. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: a review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782. DOI: 10.1016/j.jrmge.2017.04.004.
|
[2] |
杨建华, 孙文彬, 姚池, 等. 高地应力岩体多孔爆破破岩机制 [J]. 爆炸与冲击, 2020, 40(7): 075202. DOI: 10.11883/bzycj-2019-0427.
YANG J H, SUN W B, YAO C, et al. Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses [J]. Explosion and Shock Waves, 2020, 40(7): 075202. DOI:10.11883/bayzj-2019-0427. DOI: 10.11883/bzycj-2019-0427.
|
[3] |
朱万成, 唐春安, 左宇军. 深部岩体动态损伤与破裂过程 [M]. 北京: 科学出版社, 2014: 112–121.
|
[4] |
NICHOLLS H R, DUVALL W I. Presplitting rock in the presence of a static stress field [R]. Washington DC: U. S. Department of the Interior, Bureau of Mines, 1966.
|
[5] |
KUTTER H K, FAIRHURST C. On the fracture process in blasting [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3): 181–202. DOI: 10.1016/0148-9062(71)90018-0.
|
[6] |
肖正学, 张志呈, 李端明. 初始应力场对爆破效果的影响 [J]. 煤炭学报, 1996, 21(5): 497–501. DOI: 10.13225/j.cnki.jccs.1996.05.011.
XIAO Z X, ZHANG Z C, LI D M. The influence of initial stress field on blasting [J]. Journal of China Coal Society, 1996, 21(5): 497–501. DOI: 10.13225/j.cnki.jccs.1996.05.011.
|
[7] |
刘殿书, 王万富, 杨吕俊, 等. 初始应力条件下爆破机理的动光弹实验研究 [J]. 煤炭学报, 1999, 24(6): 612–614. DOI: 10.13225/j.cnki.jccs.1999.06.012.
LIU D S, WANG W F, YANG L J, et al. Holophotoelasticity study on mechanism of blasting under initiative stress field [J]. Journal of China Coal Society, 1999, 24(6): 612–614. DOI: 10.13225/j.cnki.jccs.1999.06.012.
|
[8] |
YANG R S, DING C X, LI Y L, et al. Crack propagation behavior in slit charge blasting under high static stress conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 117–123. DOI: 10.1016/J.ijrmms.2019.05.002.
|
[9] |
杨仁树, 肖成龙, 丁晨曦, 等. 空孔与运动裂纹相互作用的动焦散线实验研究 [J]. 爆炸与冲击, 2020, 40(5): 052202. DOI: 10.11883/bzycj-2019-0091.
YANG R S, XIAO C L, DING C X, et al. Experimental study on dynamic caustics of interaction between void and running crack [J]. Explosion and Shock Waves, 2020, 40(5): 052202. DOI: 10.11883/bzycj-2019-0091.
|
[10] |
岳中文, 田世颖, 张士春, 等. 单向围压作用下切缝药包爆破爆生裂纹扩展规律的研究 [J]. 振动与冲击, 2019, 38(23): 186–195. DOI: 10.13465/j.cnki.jvs.2019.23.027.
YUE Z W, TIAN S Y, ZHANG S C, et al. Expanding law of cracks formed by slotted cartridge blast under unidirectional confining pressure [J]. Journal of Vibration and Shock, 2019, 38(23): 186–195. DOI: 10.13465/j.cnki.jvs.2019.23.027.
|
[11] |
YANG L Y, HUANG C, BAO S J, et al. Model experimental study on controlled blasting of slit charge in deep rock mass [J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106318. DOI: 10.1016/j.soildyn.2020.106318.
|
[12] |
MA G W, AN X M. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966–975. DOI: 10.1016/j.ijrmms.2007.12.002.
|
[13] |
XIE L X, LU W B, ZHANG Q B, et al. Damage evolution mechanisms of rock in deep tunnels induced by cut blasting [J]. Tunnelling and Underground Space Technology, 2016, 58: 257–270. DOI: 10.1016/j.tust.2016.06.004.
|
[14] |
XIE L X, LU W B, ZHANG Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses [J]. Tunnelling and Underground Space Technology, 2017, 66: 19–33. DOI: 10.1016/j.tust.2017.03.009.
|
[15] |
LI X D, LIU K W, YANG J C, et al. Numerical study on blast-induced fragmentation in deep rock mass [J]. International Journal of Impact Engineering, 2022, 170: 104367. DOI: 10.1016/j.ijimpeng.2022.104367.
|
[16] |
LI X D, LIU K W, SHA Y Y, et al. Numerical investigation on rock fragmentation under decoupled charge blasting [J]. Computers and Geotechnics, 2023, 157: 105312. DOI: 10.1016/j.compgeo.2023.105312.
|
[17] |
KIRSCH G. Die theorie der elastizitat und die bedurfnisse der festigkeitslehre [J]. Zantralblatt Verlin Deutscher Ingenieure, 1898, 42: 797–807.
|
[18] |
MIKLOWITZ J, KAUL R K. The theory of elastic waves and waveguides [J]. Journal of Applied Mechanics, 1979, 46(4): 969. DOI: 10.1115/1.3424709.
|
[19] |
YI C P, JOHANSSON D, GREBERG J. Effects of in-situ stresses on the fracturing of rock by blasting [J]. Computers and Geotechnics, 2018, 104: 321–330. DOI: 10.1016/j.compgeo.2017.12.004.
|
[20] |
TAO J, YANG X G, LI H T, et al. Effects of in-situ stresses on dynamic rock responses under blast loading [J]. Mechanics of Materials, 2020, 145: 103374. DOI: 10.1016/j.mechmat.2020.103374.
|
[21] |
LI X H, ZHU Z M, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses [J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. DOI: 10.1016/j.tust.2021.103968.
|
[22] |
WANG Z L, WANG H C, WANG J G, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks [J]. Computers and Geotechnics, 2021, 135: 104172. DOI: 10.1016/j.compgeo.2021.104172.
|
[23] |
俞茂宏. 双剪理论及其应用 [M]. 北京: 科学出版社, 1998: 849–860.
|
[24] |
BORRVALL T, SWEDEN L, RIEDEL W. The RHT concrete model in LS-DYNA [C]// Proceedings of the 8th European LS-DYNA Conference. Strasbourg, France, 2011.
|
[25] |
李洪超, 陈勇, 刘殿书, 等. 岩石RHT模型主要参数敏感性及确定方法研究 [J]. 北京理工大学学报, 2018, 38(8): 779–785. DOI: 10.15918/j.tbit1001-0645.2018.08.002.
LI H C, CHEN Y, LIU D S, et al. Sensitivity analysis determination and optimization of rock RHT parameters [J]. Transactions of Beijing Institute of Technology, 2018, 38(8): 779–785. DOI: 10.15918/j.tbit1001-0645.2018.08.002.
|
[26] |
MA S Z, LIU K W, GUO T F, et al. Experimental and numerical investigation on the mechanical characteristics and failure mechanism of cracked coal & rock-like combined sample under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103583. DOI: 10.1016/j.tafmec.2022.103583.
|
[27] |
BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16–25. DOI: 10.1016/j.ijimpeng.2011.08.010.
|
[28] |
YANG J C, LIU K W, LI X D, et al. Stress initialization methods for dynamic numerical simulation of rock mass with high in-situ stress [J]. Journal of Central South University, 2020, 27(10): 3149–3162. DOI: 10.1007/s11771-020-4535-3.
|
[29] |
谢和平, 高峰, 周宏伟, 等. 岩石断裂和破碎的分形研究 [J]. 防灾减灾工程学报, 2003, 23(4): 1–9. DOI: 10.3969/j.issn.1672-2132.2003.04.001.
XIE H P, GAO F, ZHOU H W, et al. Fractal fracture and fragmentation in rocks [J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(4): 1–9. DOI: 10.3969/j.issn.1672-2132.2003.04.001.
|
[30] |
DING C X, YANG R S, YANG L Y. Experimental results of blast-induced cracking fractal characteristics and propagation behavior in deep rock mass [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104772. DOI: 10.1016/J.ijrmms.2021.104772.
|