Volume 44 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
GUO Liuwei, ZHAI Zhaohui, HAN Xiufeng, WANG Wei, HE Yu, GUI Yulin. Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive[J]. Explosion And Shock Waves, 2024, 44(1): 012301. doi: 10.11883/bzycj-2023-0192
Citation: GUO Liuwei, ZHAI Zhaohui, HAN Xiufeng, WANG Wei, HE Yu, GUI Yulin. Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive[J]. Explosion And Shock Waves, 2024, 44(1): 012301. doi: 10.11883/bzycj-2023-0192

Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive

doi: 10.11883/bzycj-2023-0192
  • Received Date: 2023-05-24
  • Rev Recd Date: 2023-08-28
  • Available Online: 2023-09-28
  • Publish Date: 2024-01-11
  • 1 550 nm photon Doppler velocimetry and terahertz-wave Doppler interferometric velocimetry were used in the initiating and flyer driven experiments to gain data on the temperature effect for the TATB/RDX based explosive. Explosive/window interfacial velocity, run distance to detonation and the velocity of flyer driven by the explosive were measured respectively at different temperature. Experiment results at temperature –45, 20, and 70 ℃ reveal that the run distance to detonation, the reaction zone time width and the detonation phase velocity decrease with temperature. In particular, the run distance to detonation and the reaction zone time width both decrease almost linearly, while the linear coefficient is found to be 0.015 mm/℃ and 0.165 ns/℃, respectively. With the increase of temperature, the detonation phase velocity of TATB/RDX based explosive decreases nonlinearly, which differs from TATB based IHEs, for which it decreases linearly. Four stages obviously exist during the motion of the flyer, i.e., spallation, pursuit, remerging and the united flyer. Divergent or grazing detonation driving condition can be resolved based on the analysis for the spallation duration in big plate driven experiment. The peak velocity and the velocity during spallation for the flyer vary with temperature in the same trend. The velocity at ambient temperature is the highest, hot one is the next and then the cold one. This may be related to the different reaction zone performance at different temperature. When the flyer united as a whole again, the final velocity under cold environment turns to be the highest one, the hot result almost equals to the ambient one, which may be related to the different detonation product performance at different temperature. The metal accelerating behavior at different temperature indicates that the reaction zone and the detonation product for TATB/RDX based explosive vary with temperature with the different path, which need more experiment data and numerical simulation for further investigation.
  • loading
  • [1]
    WANG Y, SONG S W, HUANG C, et al. Hunting for advanced high-energy-density materials with well-balanced energy and safety through an energetic host-guest inclusion strategy [J]. Journal of Materials Chemistry A, 2019, 33(7): 19248–19257. DOI: 10.1039/C9TA04677A.
    [2]
    WATT D, PEUGETOT F, DOHERTY R, et al. Reduced sensitivity RDX, where are we? [C] // Proceedings of the 35th International Annual Conference of ICT. Karlsruhe: ICT, 2004.
    [3]
    ELBEIH A, ZEMAN S, PACHMAN J. Effect of polar plasticizers on the characteristics of selected cyclic nitramines [J]. Central European Journal of Energetic Materials, 2013, 10(3): 339–350. DOI: 10.12733/JICS20102176.
    [4]
    WEI X F, ZHANG A B, MA Y, et al. Toward low-sensitive and high-energetic cocrystal Ⅲ: thermodynamics of the energetic-energetic cocrystal formation [J]. CrystEngComm, 2015, 17(47): 9037–9047. DOI: 10.1039/C5CE02009C.
    [5]
    GONG F Y, ZHANG J H, DING L, et al. Mussel-inspired coating of energetic crystals: a compact core-shell structure with highly enhanced thermal stability [J]. Chemical Engineering Journal, 2017, 309: 140–150. DOI: 10.1016/J.CEJ.2016.10.020.
    [6]
    SHI Y B, BAI L F, LI J H, et al. Theoretical calculation into the effect of molar ratio on the structures, stability, mechanical properties and detonation performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/1,3,5-trinitro-1,3,5-triazacyco-hexane cocrys-tal [J]. Journal of Molecular Modeling, 2019, 25(25): 299. DOI: 10.1007/s00894-019-4181-6.
    [7]
    SURESH K, AULAKH D, PUREWAL J, et al. Optimizing hydrogen storage in MOFs through engineering of crystal morphology and control of crystal size [J]. Journal of the American Chemical Society, 2021, 143: 10727–10734. DOI: 10.1021/JACS.1C04926.
    [8]
    CAI J X, XIE C P, XIONG J, et al. High performance and heat-resistant pyrazole-1,2,4-triazole energetic materials: tuning the thermal stability by asymmetric framework and azo-bistriazole bridge [J]. Chemical Engineering Journal, 2022, 433: 134480. DOI: 10.1016/J.CEJ.2021.134480.
    [9]
    QU Y Z, QIAN W, ZHANG J H, et al. Interfacial engineered RDX/TATB energetic co-particles for enhanced safety performance and thermal stability [J]. Dalton Transactions, 2022, 51(27): 10527–10534. DOI: 10.1039/D2DT01421A.
    [10]
    郭刘伟, 刘宇思, 汪斌, 等. 高温下TATB基钝感炸药爆轰波波阵面曲率效应实验研究 [J]. 含能材料, 2017, 25(2): 138–143. DOI: 10.11943/j.issn.1006-9941.2017.02.008.

    GUO L W, LIU Y S, WANG B, et al. Front curvature rate stick experiment of TATB based insensitive high explosives at high temperature [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 138–143. DOI: 10.11943/j.issn.1006-9941.2017.02.008.
    [11]
    郭刘伟, 刘宇思, 黄宇, 等. 宽温域环境JB-9014炸药爆轰波波阵面曲率效应实验 [J]. 含能材料, 2019, 27(12): 1062–1068. DOI: 10.11943/CJEM2018323.

    GUO L W, LIU Y S, HUANG Y, et al. Front curvature rate stick experiment of JB-9014 over a wide temperature range [J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1062–1068. DOI: 10.11943/CJEM2018323.
    [12]
    OLIVIER B. Detonation velocity of a TATB-based high-explosive as a function of density, temperature and curvature [C] // Proceedings of the 15th International Detonation Symposium. ED, 2014: 477–484.
    [13]
    HILL L G, ASLAM T D. Detonation shock dynamics calibration for PBX 9502 with temperature, density, and material lot variations [C] // Proceedings of the 14th International Detonation Symposium. USA, 2010, 52(3): 779–788. DOI: 10.1109/TAC.2007.892382.
    [14]
    SOUERS P C, LAUDERBACH L, GARZA, R, et al. LX-17 and ufTATB data for corner-turning, failure and detonation [C] // Proceedings of the 14th International Detonation Symposium. USA, 2010, 52(3): 716–726. DOI: 10.1109/TAC.2007.892382.
    [15]
    WHITWORTH N J. CREST modelling of PBX 9502 corner turning experiments at different initial temperatures [J]. Journal of Physics: Conference Series, 2014, 500(5): 1–7. DOI: 10.1088/1742-6596/500/5/052050.
    [16]
    TAN K Y, WEN S G, HAN Y. Shock initiation characteristics of explosives at near-ambient temperatures [J]. Chinese Journal of Energetic Materials, 2016, 24(9): 905–910. DOI: 10.11943/J.ISSN.1006-9941.201609.015.
    [17]
    GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to –55°C [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599.
    [18]
    HOLLOWELL B C, GUSTAVSEN R L, DATTELBAUM D M, et al. Shock initiation of the TATB-based explosive PBX9502 cooled to 77 Kelvin [J]. Journal of Physics: Conference Series, 2014, 500(18): 182014. DOI: 10.1088/1742-6596/500/18/182014.
    [19]
    GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the TATB-based explosive PBX-9502 heated to –76 °C [C] // Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter 2015. NY, USA: AIP Publishing. DOI: 10.1063/1.4971475.
    [20]
    FRANCOIS E G, SANDERS V E, MORRIS J. Front curvature and rate stick data on formulations containing DAAF, TATB, RDX and HMX including diameter and temperature effects [C] // Shock Compression of Condensed Matter-2011. Chicago, Illinois: American Physical Society, 2011, DOI: 10.1063/1.3686346.
    [21]
    TARVER C M. Detonation reaction zones in condensed explosives [C] // 14th APS Topical Conference on SCCM. Baltimore, MD, USA: American Physical Society, 2005.
    [22]
    GUSTAVSEN R L, BARTRAM B D, SANCHEZ N J. Detonation wave profiles measured in plastic bonded explosives using 1 550 nm photon Doppler velocimetry [C] // Proceedings of the 16th Conference of the American-Physical-Society-Topical-Group on Shock Compression of Condensed Matter. NY, AIP Publishing, 2009. DOI: 10.1063/1.3295117.
    [23]
    ZHAI Z H, LIU Q, GUO L W, et al. Design of terahertz-wave Doppler interferometric velocimetry for detonation physics [J]. Applied Physics Letters, 2020, 116(16): 161102. DOI: 10.1063/1.5142415.
    [24]
    GERHARD M, REN B G, RAHM M. Terahertz Mach-Zehnder interferometer based on a hollow-core metallic ridge waveguide [J]. Applied Physics Letters, 2015, 106(17): 171112. DOI: 10.1063/1.4919588.
    [25]
    CHEN J C, KAUSHIK S. Terahertz interferometer that senses vibrations behind barriers [J]. IEEE Photonics Technology Letters, 2007, 19(7): 486–488. DOI: 10.1109/LPT.2007.893583.
    [26]
    HUANG X L, ZHAI Z H, FU H, et al. Experimental investigation of the deflagration rate for PBX utilizing terahertz-wave-based Doppler velocimetry [J]. Journal of the Optical Society of America B, 2022, 39(3): A25–A30. DOI: 10.1364/JOSAB.444723.
    [27]
    PENG W Y, YANG S Q, SHU J X, et al. Experimental investigation of shock response to an insensitive explosive under double-shock wave [J]. International Journal of Impact Engineering, 2023, 173(1): 1–11. DOI: 10.1016/j.ijimpeng.2022.104489.
    [28]
    舒俊翔, 裴红波, 黄文斌, 等. 几种常用炸药的爆压与爆轰反应区精密测量 [J]. 爆炸与冲击, 2022, 42(5): 052301. DOI: 10.11883/bzycj-2021-0305.

    SHU J X, PEI H B, HUANG W B, et al. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives [J]. Explosion and Shock Waves, 2022, 42(5): 052301. DOI: 10.11883/bzycj-2021-0305.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article views (196) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return