Citation: | CHEN Xu, LI Ziqi, WU Yadong, WANG Jingbo, LI Yulong, GUO Yazhou. Impact testing technique based on the principle of electromagnetic induction[J]. Explosion And Shock Waves, 2024, 44(11): 114101. doi: 10.11883/bzycj-2023-0195 |
[1] |
金恂叔. 航天器动力学环境试验的发展概况和趋势 [J]. 航天器环境工程, 2003, 30(2): 15–21. DOI: 10.3969/j.issn.1673-1379.2003.02.003.
JIN X S. The development status and trends of spacecraft dynamic environment testing [J]. Spacecraft Environment Engineering, 2003, 30(2): 15–21. DOI: 10.3969/j.issn.1673-1379.2003.02.003.
|
[2] |
丁继锋, 赵欣, 韩增尧. 航天器火工冲击技术研究进展 [J]. 宇航学报, 2014, 35(12): 1339–1349. DOI: 10.3873/j.issn.1000-1328.2014.12.001.
DING J F, ZHAO X, HAN Z Y. Research development of spacecraft pyroshock technique [J]. Journal of Astronautics, 2014, 35(12): 1339–1349. DOI: 10.3873/j.issn.1000-1328.2014.12.001.
|
[3] |
WU Z B, MA T H, ZHANG Y B, et al. Ground simulation test of 2D dynamic overload environment of fuze launching [J]. Shock and Vibration, 2020, 2020: 2858640. DOI: 10.1155/2020/2858640.
|
[4] |
朱广生, 刘瑞朝, 周松柏, 等. 基于爆炸激波管的火箭级间段强度考核和分离试验研究 [J]. 航空学报, 2015, 36(7): 2207–2213. DOI: 10.7527/S1000-6893.2015.0041.
ZHU G S, LIU R C, ZHOU S B, et al. Experimental research of strength check and stage separation for a rocket’s stage section based on a blast simulator [J]. Acta Aeronauticaet Astronautica Sinica, 2015, 36(7): 2207–2213. DOI: 10.7527/S1000-6893.2015.0041.
|
[5] |
张学舜, 沈瑞琪. 火工品动态着靶模拟仿真技术研究 [J]. 火工品, 2003(4): 1–4. DOI: 10.3969/j.issn.1003-1480.2003.04.001.
ZHANG X S, SHEN R Q. Study on dynamic touch-target analog simulation technique for initiating explosive devices [J]. Initiators & Pyrotechnics, 2003(4): 1–4. DOI: 10.3969/j.issn.1003-1480.2003.04.001.
|
[6] |
DAI K R, WANG X F, YI F, et al. Triboelectric nanogenerators as self-powered acceleration sensor under high-g impact [J]. Nano Energy, 2018, 45: 84–93. DOI: 10.1016/j.nanoen.2017.12.022.
|
[7] |
XU F J, MA T H. Modeling and studying acceleration-induced effects of piezoelectric pressure sensors using system identification theory [J]. Sensors, 2019, 19(5): 1052. DOI: 10.3390/s19051052.
|
[8] |
张伟, 沈瑞琪, 叶迎华, 等. 落球碰撞试验模拟火工品过载特性研究 [J]. 火工品, 2012(3): 4. DOI: 10.3969/j.issn.1003-1480.2012.03.002.
ZHANG W, SHEN R Q, YE Y H, et al. Research on the overloading characteristics of initiator simulated by falling ball impacting experiment [J]. Initiators & Pyrotechnics, 2012(3): 4. DOI: 10.3969/j.issn.1003-1480.2012.03.002.
|
[9] |
DUAN Z Y, LUO T H, TANG D Y, et al. Potential analysis of high-g shock experiment technology for heavy specimens based on air cannon [J]. Shock and Vibration, 2020: 5439785. DOI: 10.1155/2020/5439785.
|
[10] |
TANG T, MA S J, LI F Y, et al. Research on overload signal of new impact body based on air cannon test and simulation [J]. Journal of Physics: Conference Series, 2021, 2029: 012008. DOI: 10.1088/1742-6596/2029/1/012008.
|
[11] |
杨华. 高过载加速度试验装置结构设计与分析 [D]. 南京: 南京理工大学, 2012: 1–6.
|
[12] |
FOSTER J T, FREW D J, FORRESTAL M J, et al. Shock testing accelerometers with a Hopkinson pressure bar [J]. International Journal of Impact Engineering, 2012, 46: 56–61. DOI: 10.1016/j.ijimpeng.2012.02.006.
|
[13] |
SHI Y B, ZHANG H, TANG J, et al. Anti-overload of a high-g acceleration sensor [J]. Advanced Materials Research, 2011, 291: 3103–3107. DOI: 10.4028/www.scientific.net/AMR.291-294.3103.
|
[14] |
NIE H L, SUO T, WU B B, et al. A versatile split Hopkinson pressure bar using electromagnetic loading [J]. International Journal of Impact Engineering, 2018, 116: 94–104. DOI: 10.1016/j.ijimpeng.2018.02.002.
|
[15] |
GUO Y Z, DU B, LIU H F, et al. Electromagnetic Hopkinson bar: a powerful scientific instrument to study mechanical behavior of materials at high strain rates [J]. Review of Scientific Instruments, 2020, 91(8): 081501. DOI: 10.1063/5.0006084.
|
[16] |
王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展 [J]. 力学进展, 2021, 51(4): 729–754. DOI: 10.6052/1000-0992-20-024.
WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar [J]. Advances in Mechanics, 2021, 51(4): 729–754. DOI: 10.6052/1000-0992-20-024.
|
[17] |
TAKATSU N, KATO M, SATO K, et al. High-speed forming of metal sheets by electromagnetic force [J]. JSME International Journal. Ser. 3, Vibration, Control Engineering, Engineering for Industry, 1988, 31(1): 142–148. DOI: 10.1299/jsmec1988.31.142.
|
[18] |
钟卫佳. 铜加工技术实用手册 [M]: 北京: 冶金工业出版社, 2007: 73–119.
|
[19] |
刘旭阳. TC4钛合金动态本构关系研究 [D]. 南京: 南京航空航天大学, 2010: 7–28.
|