Citation: | JIANG Zhoushun, XU Fengxiang, ZOU Zhen, ZHOU Qianmou. Dynamic response and energy absorption properties of sinusoidally curved three-dimensional negative Poissonʼs ratio sandwich panels subjected to blast loading[J]. Explosion And Shock Waves, 2024, 44(2): 021001. doi: 10.11883/bzycj-2023-0214 |
[1] |
DHARMASENA K P, WADLEY H N G, XUE Z Y, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading [J]. International Journal of Impact Engineering, 2008, 35(9): 1063–1074. DOI: 10.1016/j.ijimpeng.2007.06.008.
|
[2] |
ZHANG J X, ZHOU R F, WANG M S, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2018, 122: 265–275. DOI: 10.1016/j.ijimpeng.2018.08.016.
|
[3] |
UTH T, DESHPANDE V S. Response of clamped sandwich beams subjected to high-velocity impact by sand slugs [J]. International Journal of Impact Engineering, 2014, 69: 165–181. DOI: 10.1016/j.ijimpeng.2014.02.012.
|
[4] |
张豪, 常白雪, 赵凯, 等. 三种蜂窝夹芯板的抗爆性能分析 [J]. 北京理工大学学报, 2022, 42(6): 557–566. DOI: 10.15918/j.tbit1001-0645.2021.225.
ZHANG H, CHANG B X, ZHAO K, et al. Anti-explosion analysis of honeycomb sandwich panels with three kinds of core structures [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 557–566. DOI: 10.15918/j.tbit1001-0645.2021.225.
|
[5] |
田力, 胡建伟. Ⅰ-Ⅴ型夹芯板在近爆冲击波和破片群联合作用下防爆性能研究 [J]. 湖南大学学报(自然科学版), 2019, 46(1): 32–46. DOI: 10.16339/j.cnki.hdxbzkb.2019.01.004.
TIAN L, HU J W. Research on explosion protective properties of I-V sandwich panel under combined loading of close-range blast wave and fragments [J]. Journal of Hunan University (Natural Sciences), 2019, 46(1): 32–46. DOI: 10.16339/j.cnki.hdxbzkb.2019.01.004.
|
[6] |
田力, 张浩. 冲击波和预制破片复合作用下H型钢柱损伤效应分析 [J]. 同济大学学报(自然科学版), 2018, 46(3): 289–299. DOI: 10.11908/j.issn.0253-374x.2018.03.002.
TIAN L, ZHANG H. Damage effect analysis of H-section steel columns subjected to synergistic effects of blast and prefabricated fragments [J]. Journal of Tongji University (Natural Science), 2018, 46(3): 289–299. DOI: 10.11908/j.issn.0253-374x.2018.03.002.
|
[7] |
ZHANG C Z, CHENG Y S, ZHANG P, et al. Numerical investigation of the response of I-core sandwich panels subjected to combined blast and fragment loading [J]. Engineering Structures, 2017, 151: 459–471. DOI: 10.1016/j.engstruct.2017.08.039.
|
[8] |
LI J F, QIN Q H, ZHANG J X. Internal blast resistance of sandwich cylinder with lattice cores [J]. International Journal of Mechanical Sciences, 2021, 191: 106107. DOI: 10.1016/j.ijmecsci.2020.106107.
|
[9] |
李勇, 肖伟, 程远胜, 等. 冲击波与破片对波纹杂交夹层板的联合毁伤数值研究 [J]. 爆炸与冲击, 2018, 38(2): 279–288. DOI: 10.11883/bzycj-2016-0224.
LI Y, XIAO W, CHENG Y S, et al. Numerical research on response of hybrid corrugated sandwich plates subjected to combined blast and fragment loadings [J]. Explosion and Shock Waves, 2018, 38(2): 279–288. DOI: 10.11883/bzycj-2016-0224.
|
[10] |
QIN Q H, CHEN S J, LI K K, et al. Structural impact damage of metal honeycomb sandwich plates [J]. Composite Structures, 2020, 252: 112719. DOI: 10.1016/j.compstruct.2020.112719.
|
[11] |
ZHANG J X, QIN Q H, ZHANG J T, et al. Low-velocity impact on square sandwich plates with fibre-metal laminate face-sheets: analytical and numerical research [J]. Composite Structures, 2021, 259: 113461. DOI: 10.1016/j.compstruct.2020.113461.
|
[12] |
QIN Q H, XIA Y M, LI J F, et al. On dynamic crushing behavior of honeycomb-like hierarchical structures with perforated walls: experimental and numerical investigations [J]. International Journal of Impact Engineering, 2020, 145: 103674. DOI: 10.1016/j.ijimpeng.2020.103674.
|
[13] |
ZHANG J X, ZHU Y Q, LI K K, et al. Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: experimental and numerical investigations [J]. International Journal of Impact Engineering, 2022, 164: 104201. DOI: 10.1016/j.ijimpeng.2022.104201.
|
[14] |
ZHANG X W, YANG D Q. Mechanical properties of auxetic cellular material consisting of Re-entrant hexagonal honeycombs [J]. Materials, 2016, 9(11): 900. DOI: 10.3390/ma9110900.
|
[15] |
BEZAZI A, SCARPA F. Mechanical behaviour of conventional and negative Poisson's ratio thermoplastic polyurethane foams under compressive cyclic loading [J]. International Journal of Fatigue, 2007, 29(5): 922–930. DOI: 10.1016/j.ijfatigue.2006.07.015.
|
[16] |
ABADA M, IBRAHIM A. Metallic ribbon-core sandwich panels subjected to air blast loading [J]. Applied Sciences, 2020, 10(13): 4500. DOI: 10.3390/app10134500.
|
[17] |
WIERNICKI C J, LIEM P E F, WOODS G D, et al. Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads [J]. Naval Engineers Journal, 1991, 103(3): 192–202. DOI: 10.1111/j.1559-3584.1991.tb00949.x.
|
[18] |
GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997. DOI: 10.1017/CBO9781139878326.
|
[19] |
LU G X, YU T X. Energy absorption of structures and materials [M]. Cambridge: Woodhead Publishing, 2003.
|
[20] |
JING L, WANG Z H, NING J G, et al. The dynamic response of sandwich beams with open-cell metal foam cores [J]. Composites Part B:Engineering, 2011, 42(1): 1–10. DOI: 10.1016/j.compositesb.2010.09.024.
|
[21] |
ZHANG P W, LI X, JIN T, et al. Dynamic response of circular metallic sandwich panels under projectile impact [J]. Journal of Sandwich Structures and Materials, 2017, 19(5): 572–594. DOI: 10.1177/1099636215626596.
|
[22] |
孙晓旺, 陶晓晓, 王显会, 等. 负泊松比蜂窝材料抗爆炸特性及优化设计研究 [J]. 爆炸与冲击, 2020, 40(9): 095101. DOI: 10.11883/bzycj-2020-0011.
SUN X W, TAO X X, WANG X H, et al. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material [J]. Explosion and Shock Waves, 2020, 40(9): 095101. DOI: 10.11883/bzycj-2020-0011.
|
[23] |
杨德庆, 张相闻, 吴秉鸿. 负泊松比效应防护结构抗爆抗冲击性能影响因素 [J]. 上海交通大学学报, 2018, 52(4): 379–387. DOI: 10.16183/j.cnki.jsjtu.2018.04.001.
YANG D Q, ZHANG X W, WU B H. The influence factors of explosion and shock resistance performance of Auxetic sandwich defensive structures [J]. Journal of Shanghai Jiaotong University, 2018, 52(4): 379–387. DOI: 10.16183/j.cnki.jsjtu.2018.04.001.
|
[24] |
孙魁远, 孙晓旺, 张宏伟, 等. 厚度梯度型负泊松比蜂窝抗爆炸特性及优化 [J]. 兵器装备工程学报, 2022, 43(4): 190–197. DOI: 10.11809/bqzbgcxb2022.04.031.
SUN K Y, SUN X W, ZHANG H W, et al. Anti-explosion characteristics and optimization of negative Poisson’s ratio honeycomb with thickness gradient [J]. Journal of Ordnance Equipment Engineering, 2022, 43(4): 190–197. DOI: 10.11809/bqzbgcxb2022.04.031.
|
[25] |
卫禹辰, 袁梦琦, 钱新明, 等. 爆炸冲击环境下内凹蜂窝型梯度结构响应特性研究 [J]. 中国安全生产科学技术, 2021, 17(1): 5–11. DOI: 10.11731/j.issn.1673-193x.2021.01.001.
WEI Y C, YUAN M Q, QIAN X M, et al. Research on response characteristics of concave honeycomb gradient structure under explosive impact environment [J]. Journal of Safety Science and Technology, 2021, 17(1): 5–11. DOI: 10.11731/j.issn.1673-193x.2021.01.001.
|
[26] |
杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究 [J]. 爆炸与冲击, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.
YANG D Q, WU B H, ZHANG X W. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core [J]. Explosion and Shock Waves, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.
|
[27] |
JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B:Engineering, 2016, 106: 206–217. DOI: 10.1016/j.compositesb.2016.09.037.
|
[28] |
GAO Q, GE C Q, ZHUANG W C, et al. Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading [J]. Materials and Design, 2019, 161: 22–34. DOI: 10.1016/j.matdes.2018.11.013.
|
[29] |
BEHARIC A, EGUI R R, YANG L. Drop-weight impact characteristics of additively manufactured sandwich structures with different cellular designs [J]. Materials and Design, 2018, 145: 122–134. DOI: 10.1016/j.matdes.2018.02.066.
|
[30] |
杨泽水, 薛玉祥, 刘爱荣. 三维负泊松比星型结构冲击动力学研究 [J]. 工程力学, 2022, 39(S1): 356–363. DOI: 10.6052/j.issn.1000-4750.2021.05.S057.
YANG Z S, XUE Y X, LIU A R. Study on the impact dynamics of three-dimensional star-shaped structure with negative Poisson’s ratio [J]. Engineering Mechanics, 2022, 39(S1): 356–363. DOI: 10.6052/j.issn.1000-4750.2021.05.S057.
|
[31] |
WANG Y L, ZHAO W Z, ZHOU G, et al. Analysis and parametric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading [J]. International Journal of Mechanical Sciences, 2018, 142/143: 245–254. DOI: 10.1016/j.ijmecsci.2018.05.001.
|
[32] |
IMBALZANO G, TRAN P, NGO T D, et al. Three-dimensional modelling of auxetic sandwich panels for localised impact resistance [J]. Journal of Sandwich Structures and Materials, 2017, 19(3): 291–316. DOI: 10.1177/1099636215618539.
|
[33] |
IMBALZANO G, TRAN P, LEE P V S, et al. Influences of material and geometry in the performance of auxetic composite structure under blast loading [J]. Applied Mechanics and Materials, 2016, 846: 476–481. DOI: 10.4028/www.scientific.net/AMM.846.476.
|
[34] |
XU F X, YU K J, HUA L. In-plane dynamic response and multi-objective optimization of negative Poisson's ratio (NPR) honeycomb structures with sinusoidal curve [J]. Composite Structures, 2021, 269: 114018. DOI: 10.1016/j.compstruct.2021.114018.
|
[35] |
虞科炯, 徐峰祥, 华林. 正弦曲边负泊松比蜂窝结构面内冲击性能研究 [J]. 振动与冲击, 2021, 40(13): 51–59. DOI: 10.13465/j.cnki.jvs.2021.13.007.
YU K J, XU F X, HUA L. In plane impact performance of honeycomb structure with sinusoidal curved edge and negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2021, 40(13): 51–59. DOI: 10.13465/j.cnki.jvs.2021.13.007.
|
[36] |
邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析 [J]. 振动与冲击, 2017, 36(13): 103–109,154. DOI: 10.13465/j.cnki.jvs.2017.13.016.
DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2017, 36(13): 103–109,154. DOI: 10.13465/j.cnki.jvs.2017.13.016.
|
[37] |
LI X, ZHANG P W, WANG Z H, et al. Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis [J]. Composite Structures, 2014, 108: 1001–1008. DOI: 10.1016/j.compstruct.2013.10.034.
|
[38] |
NEUBERGER A, PELES S, RITTEL D. Scaling the response of circular plates subjected to large and close-range spherical explosions. Part II: buried charges [J]. International Journal of Impact Engineering, 2007, 34(5): 874–882. DOI: 10.1016/j.ijimpeng.2006.04.002.
|
[39] |
LIU J F, WANG Z G, HUI D. Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes [J]. Composites Part B: Engineering, 2018, 145: 261–269. DOI: 10.1016/j.compositesb.2018.03.005.
|
[40] |
WANG E D, LI Q, SUN G Y. Computational analysis and optimization of sandwich panels with homogeneous and graded foam cores for blast resistance [J]. Thin-Walled Structures, 2020, 147: 106494. DOI: 10.1016/j.tws.2019.106494.
|