Citation: | ZHANG Fengguo, WANG Pei, WANG Yanjin, HU Jianbo. Improvement of void growth model and its application in simulating spallation experiments under different impact loading wave forms[J]. Explosion And Shock Waves, 2024, 44(5): 051201. doi: 10.11883/bzycj-2023-0218 |
[1] |
SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics, 1976, 47: 4814–4826. DOI: 10.1063/1.322523.
|
[2] |
JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. DOI: 10.1063/1.329011.
|
[3] |
IKKURTHI V R, CHATURVEDI S. Use of different damage models for simulating impact-driven spallation in metal plates [J]. International Journal of Impact Engineering, 2004, 30: 275–301. DOI: 10.1016/S0734-743X(03)00070-8.
|
[4] |
JACQUES N, CZAMOTA C, MERCIER S, et al. A micromechanical constitutive model for dynamic damage and fracture of ductile materials [J]. International Journal of Fracture, 2010, 162: 159–175. DOI: 10.1007/s10704-009-9436-2.
|
[5] |
MAYER A E, MAYER P N. Strain rate dependence of spall strength for solid and molten lead and tin [J]. International Journal of Fracture, 2020, 222: 171–195. DOI: 10.1007/s10704-020-00440-8.
|
[6] |
WILKERSON J W. On the micromechanics of void dynamics at extreme rates [J]. International Journal of Plasticity, 2017, 95: 21–42. DOI: 10.1016/j.ijplas.2017.03.008.
|
[7] |
CHEN X, ASAY J R, DWIVEDI S K, et al. Spall behavior of aluminum with varying microstructures [J]. Journal of Applied Physics, 2006, 99(2): 023528. DOI: 10.1063/1.2165409.
|
[8] |
TONKS D L, THISSELLl W R, SCHWARZ D S. Modeling incipient copper damage data from the tensile Hopkinson bar and gas gun [C] // Shock Compression of Condensed Matter-2003. Portland, Oregon, USA: AIP Conference Proceedings, 2003: 507–510. DOI: 10.1063/1.1780288.
|
[9] |
VIDEAU L, COMBIS P, LAFFITE S, et al. Laser-driven spall experiments in ductile materials in order to characterize Johnson fracture model constants [C] // Shock Compression of Condensed Matter-2011. Chicago Illinois, USA: AIP Conference Proceedings, 2011: 1011–1014. DOI: 10.1063/1.3686449.
|
[10] |
翟少栋, 李英华, 彭建祥, 等. 平面碰撞与强激光加载下金属铝的层裂行为 [J]. 爆炸与冲击, 2016, 36(6): 767–773. DOI: 10.11883/1001-1455(2016)06-0767-07.
ZHAI S D, LI Y H, PENG J X, et al. Spall behavior of pure aluminum under plate-impact and high energy laser shock loadings [J]. Explosion and Shock Waves, 2016, 36(6): 767–773. DOI: 10.11883/1001-1455(2016)06-0767-07.
|
[11] |
JOHNSON J N, GRAY G T, BOUME N K. Effect of pulse duration and strain rate on incipient spall fracture in copper [J]. Journal of Applied Physics, 1999, 86: 4892–4901. DOI: 10.1063/1.371527.
|
[12] |
KOLLER D D, HIXSON R S, GRAY III G T, et al. Influence of shock-wave profile shape on dynamically induced damage in high-purity copper [J]. Journal of Applied Physics, 2005, 98: 103518. DOI: 10.1063/1.2128493.
|
[13] |
张凤国, 王裴, 王昆, 等. 关于延性金属材料层裂强度概念的解读 [J]. 防护工程, 2020, 42(5): 33–36.
ZHANG F G, WANG P, WANG K, et al. Interpretation of the concept of spalling strength of ductile metal materials [J]. Protective Engineering, 2020, 42(5): 33–36.
|
[14] |
张凤国, 刘军, 何安民, 等. 孔洞增长层裂损伤模型初始参数的确定方法及其应用 [J]. 物理学报, 2020, 69(20): 204601. DOI: 10.7498/aps.69.20200527.
ZHANG F G, LIU J, HE A M, et al. Determination method of parameters of void growth damage model and its application to simulation of spall test [J]. Acta Physica Sinca, 2020, 69(20): 204601. DOI: 10.7498/aps.69.20200527.
|
[15] |
张凤国, 刘军, 王言金, 等. 含氦泡辐照老化材料层裂损伤计算方法分析 [J]. 爆炸与冲击, 2023, 43(10): 103105. DOI: 10.11883/bzycj-2022-0486.
ZHANG F G, LIU J, WANG Y J, et al. Simulation method of spall damage for self-radiation damage aging materials with helium bubbles [J]. Explosion and Shock Waves, 2023, 43(10): 103105. DOI: 10.11883/bzycj-2022-0486.
|
[16] |
张凤国, 赵福祺, 刘军, 等. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模 [J]. 物理学报, 2022, 71: 034601. DOI: 10.7498/aps.71.20210702.
ZHANG F G, ZHAO F Q, LIU J, et al. Spall strength dependence on temperature, grain size and strain rate in pure ductile metals [J]. Acta Physica Sinca, 2022, 71: 034601. DOI: 10.7498/aps.71.20210702.
|
[17] |
RAZORENOV S V, KANEL G I. Spall strength of metals over a wide range of magnitudes and durations of shock load [R]. Chernogolovka, Russia: Institute of Chemical Physics, 1986: 46–49.
|
[18] |
KANEL G I, RAZORENOV S V, FORTOV V E. Kinetics of spallation rupture in the aluminum alloy AMg6M [J]. Journal of Applied Mechanics and Technical Physics, 1984, 25(5): 707–711. DOI: 10.1007/BF00909372.
|
[19] |
WILKERSON J W, RAMESH K T. Unraveling the anomalous grain size dependence of cavitation [J]. Physics Review Letter, 2016, 117(21): 215503. DOI: 10.1103/PhysRevLett.117.215503.
|
[20] |
NGUYEN T, LUSCHER D J, WILKERSON J W. A physics-based model and simple scaling law to predict the pressure dependence of single crystal spall strength [J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 103875. DOI: 10.1016/j.jmps.2020.103875.
|
[21] |
ROMANCHENKO V I, STEPANOV G V. The dependence of critical stresses upon the time parameters of load at spalling in copper, aluminum and steel [J]. Journal of Applied Mechanics Technical Physics, 1980, 21(4): 141–147. DOI: 10.1007/BF00916495.
|
[22] |
WU X Y, RAMESH K T, WRIGHT T W. The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading [J]. Journal of the Mechanics and Physics of Solids, 2003, 51: 1–26. DOI: 10.1016/S0022-5096(02)00079-0.
|