Volume 44 Issue 5
May  2024
Turn off MathJax
Article Contents
ZHANG Xuping, DONG Jinlei, LYU Chao, LUO Binqiang, WANG Guiji, TAN Fuli, ZHAO Jianheng. Mechanical response of NiTi alloys with different initial phase transition temperatures at high strain rates[J]. Explosion And Shock Waves, 2024, 44(5): 053102. doi: 10.11883/bzycj-2023-0257
Citation: ZHANG Xuping, DONG Jinlei, LYU Chao, LUO Binqiang, WANG Guiji, TAN Fuli, ZHAO Jianheng. Mechanical response of NiTi alloys with different initial phase transition temperatures at high strain rates[J]. Explosion And Shock Waves, 2024, 44(5): 053102. doi: 10.11883/bzycj-2023-0257

Mechanical response of NiTi alloys with different initial phase transition temperatures at high strain rates

doi: 10.11883/bzycj-2023-0257
  • Received Date: 2023-07-24
  • Rev Recd Date: 2023-12-18
  • Available Online: 2023-12-29
  • Publish Date: 2024-05-08
  • In order to obtain the physical and mechanical properties of NiTi alloys with different initial phase transition temperatures under high strain rates, the responses of NiTi alloys with different initial phase transition temperatures were systematically studied under quasi-static compression and tension at strain rate 10−3 s−1, quasi-isentropic compression at strain rate 105 s−1, and shock compression at strain rate 107 s−1. Dog-bone specimens and cylindrical rod specimens were used in the quasi-static tension and compression experiments, respectively. A series of quasi-isentropic compression and planar shock wave compression experiments were performed by using the pulsed power generator CQ-4, which can deliver pulsed currents with peak values of 3–4 MA and a rise time of 470–600 ns to short circuit loads. Velocities were measured by a photonic Doppler velocimetry (PDV) system with accuracies of 1%. The quasi-static loading stress-strain curves showed twice modulus changes for both the initial martensitic and initial austenitic NiTi alloys. The modulus changes were caused by crystal reorientation and plastic deformation of the martensitic NiTi alloy. In experiments of the initial austenitic phase, the modulus changes were caused by martensitic phase transition and plastic deformation after phase change. The Lagrangian sound speed increased continuously with the particle velocity for the initial martensitic NiTi alloy under quasi-isentropic loading. However, there are discontinuities in the sound speed curves for the initial austenite phase. The sound speed decreases intermittently from the transverse wave speed to the longitudinal wave speed and then increases linearly with the particle velocity. In shock experiments of initial martensitic NiTi alloy, a double-wave structure appeared at the free surface velocity of about 34 and 100 m/s for the initial sample temperature of 302 and 402 K, respectively. The martensite-austenite phase transition occurred during sample heating of the initial martensitic NiTi alloy. The inflection points on the velocity curve were caused by plastic yielding of martensitic and austenitic phases separately. For the initial austenite NiTi alloy, an obvious elastic-plastic transformation of austenite NiTi alloy was observed at a free surface velocity of approximately 260 m/s. The elastic limit of austenitic NiTi alloy increased from about 2 GPa to about 4 GPa with the increase of strain rate from about 105 s−1 to 107 s−1. The elastic limit decreased to 1.7 GPa at a strain rate of 107 s−1 with the initial sample temperature of 402 K. The results show that the elastic limit of NiTi alloy is greatly affected by temperature and strain rate.
  • loading
  • [1]
    LAGOUDAS D C. Shape memory alloys: modeling and engineering applications [M]. New York: Springer Science and Business Media, 2008: 1–51. DOI: 10.1007/978-0-387-47685-8.
    [2]
    CHAU E T F, FRIEND C M, ALLEN D M, et al. A technical and economic appraisal of shape memory alloys for aerospace applications [J]. Materials Science and Engineering: A, 2006, 438/440: 589–592. DOI: 10.1016/j.msea.2006.02.201.
    [3]
    RAO A, SRINIVASA A R, REDDY J N. Design of shape memory alloy actuators [M]. New York: Springer Science and Business Media, 2015: 1–43. DOI: 10.1007/978-3-319-03188-0.
    [4]
    LECCE L, CONCILIO A. Shape memory alloy engineering: for aerospace, structural and biomedical applications [M]. Oxford: Butterworth-Heinemann, 2015: 1–40.
    [5]
    QIU Y, YOUNG M L, NIE X. High strain rate compression of martensitic NiTi shape memory alloys [J]. Shape Memory and Superelasticity, 2015, 1(35): 310–318. DOI: 10.1007/s40830-015-0035-y.
    [6]
    NASSER S N, CHOI J Y, GUO W G, et al. Very high strain-rate response of a NiTi shape-memory alloy [J]. Mechanics of Materials, 2005, 37: 287–298. DOI: 10.1016/j.mechmat.2004.03.007.
    [7]
    MILLETT J C F, BOURNE N K, GRAY G T. Behavior of the shape memory alloy NiTi during one-dimensional shock loading [J]. Journal of Applied Physics, 2002, 92(6): 3107–3110. DOI: 10.1063/1.1498877.
    [8]
    MILLETT J C F, BOURNE N K. The shock-induced mechanical response of the shape memory alloy NiTi [J]. Materials Science and Engineering: A, 2004, 378(S1): 138–142. DOI: 10.1016/j.msea.2003.10.334.
    [9]
    王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017: 97–137.

    WANG L L, HU S S, YANG L M, et al. Material dynamics [M]. Hefei: University of Science and Technology of China Press, 2017: 97–137.
    [10]
    HUANG H, DURAND B, SUN Q P, et al. An experimental study of NiTi alloy under shear loading over a large range of strain rates [J]. International Journal of Impact Engineering, 2017, 108: 402–413. DOI: 10.1016/j.ijimpeng.2017.03.007.
    [11]
    LIU Y, LI Y L, RAMESH K T, et al. High strain rate deformation of martensitic NiTi shape memory alloy [J]. Scripta Materialia, 1999, 41: 89–95. DOI: 10.1016/S1359-6462(99)00058-5.
    [12]
    CHEN W W, WU Q P, KANG J H, et al. Compressive superelastic behavior of a NiTi shape memory alloy at strain rate of 0.001–750 s–1 [J]. International Journal of Solids and Structures, 2001, 38(50/51): 8989–8998. DOI: 10.1016/S0020-7683(01)00165-2.
    [13]
    BELYAEV S P, PETROV A, RAZOV A, et al. Mechanical properties of titanium nickelide at high strain rate loading [J]. Materials Science and Engineering: A, 2004, 378(1/2): 122–124. DOI: 10.1016/j.msea.2003.11.059.
    [14]
    NASSER S N, CHOI J Y, GUO W G, et al. High strain-rate, small strain response of a NiTi shape-memory alloy [J]. Journal of Engineering Materials and Technology, 2005, 127(1): 83–89. DOI: 10.1115/1.1839215.
    [15]
    ORGÉAS L, FAVIER D. Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression [J]. Acta Materialia, 1998, 46(15): 5579–5591. DOI: 10.1016/S1359-6454(98)00167-0.
    [16]
    THAKUR A M, THADHANI N N, SCHWARZ R B. Shock-induced martensitic transformations in near-equiatomic NiTi alloys [J]. Metallurgical and Materials Transactions A, 1997, 28: 1445–1455. DOI: 10.1007/s11661-997-0207-2.
    [17]
    LV C, WANG G J, ZHANG X P, et al. Spalling modes and mechanisms of shocked nanocrystalline NiTi at different loadings and temperatures [J]. Mechanics of Materials, 2021, 161: 104004. DOI: 10.1016/j.mechmat.2021.104004.
    [18]
    LIAO Y L, YE C, LIN D, et al. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening [J]. Journal of Applied Physics, 2012, 112: 033515. DOI: 10.1063/1.4742997.
    [19]
    QI Z P, WANG F, WANG J, et al. Role of temperature and strain rate on the stress reversal in dynamic damage of monocrystalline NiTi alloy [J]. Mechanics of Materials, 2022, 165: 104185. DOI: 10.1016/j.mechmat.2021.104185.
    [20]
    施绍裘, 陈江瑛, 董新龙, 等. 钛镍形状记忆合金冲击变形后形状记忆效应的研究 [J]. 爆炸与冲击, 2001, 21(3): 168–171.

    SHI S Q, CHEN J Y, DONG X L, et al. Study on shape memory effect of TiNi alloy after impact deformation [J]. Explosion and Shock Waves, 2001, 21(3): 168–171.
    [21]
    WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. DOI: 10.1063/1.4788935.
    [22]
    ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85(5): 055110. DOI: 10.1063/1.4875705.
    [23]
    ZHANG X P, WANG G J, LUO B Q, et al. Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate [J]. Journal of Alloys and Compounds, 2018, 731: 569–576. DOI: 10.1016/j.jallcom.2017.10.080.
    [24]
    陶天炯, 翁继东, 王翔. 一种双源光外差测速技术 [J]. 光电工程, 2011, 38(10): 39–45. DOI: 10.3969/j.issn.1003-501X.2011.10.007.

    TAO T J, WENG J D, WANG X. A dual laser heterodyne velocimetry [J]. Opt-Electronic Engineering, 2011, 38(10): 39–45. DOI: 10.3969/j.issn.1003-501X.2011.10.007.
    [25]
    李建中, 王德田, 刘俊, 等. 多点光子多普勒测速仪及其在爆轰物理领域的应用 [J]. 红外与激光工程, 2016, 45(4): 0422001. DOI: 10.3788/IRLA201645.0422001.

    LI J Z, WANG D T, LIU J, et al. Multi-channel photonic Doppler velocimetry and its application in the field of explosion physics [J]. Infrared and Laser Engineering, 2016, 45(4): 0422001. DOI: 10.3788/IRLA201645.0422001.
    [26]
    RAZORENOV S V, GARKUSHIN G V, KANEL G I, et al. Behavior of the nickel-titanium alloys with the shape memory effect under conditions of shock wave loading [J]. Physics of Solid State, 2011, 53: 824–829. DOI: 10.1134/S1063783411040305.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (204) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return