Volume 44 Issue 5
May  2024
Turn off MathJax
Article Contents
JIANG Nan, ZHANG Shuoyan, YAO Yingkang, ZHOU Chuanbo, LUO Xuedong, CAO Huazhang. Energy dissipation characteristics of fragmentation of frozen sandstone[J]. Explosion And Shock Waves, 2024, 44(5): 055201. doi: 10.11883/bzycj-2023-0258
Citation: JIANG Nan, ZHANG Shuoyan, YAO Yingkang, ZHOU Chuanbo, LUO Xuedong, CAO Huazhang. Energy dissipation characteristics of fragmentation of frozen sandstone[J]. Explosion And Shock Waves, 2024, 44(5): 055201. doi: 10.11883/bzycj-2023-0258

Energy dissipation characteristics of fragmentation of frozen sandstone

doi: 10.11883/bzycj-2023-0258
  • Received Date: 2023-07-23
  • Rev Recd Date: 2023-11-20
  • Available Online: 2023-12-25
  • Publish Date: 2024-05-08
  • Typical sandstones distributed in cold regions were chosen as the research object to study the impact mechanical properties of frozen rock mass and provide reasonable unit explosive consumption for frozen rock mass in blasting excavation engineering in cold regions. Sandstone specimens with different moisture contents were prepared by the controlled mass method. Comprehensive research methods of indoor split Hopkinson pressure bar (SHPB) test and theoretical analysis are used to study the impact mechanical properties and blasting fragmentation energy dissipation characteristics of frozen sandstones. The results are as follows. (1) The dynamic compressive strength and dynamic elastic modulus of frozen sandstone are overall improved compared to the room temperature state, while the peak strain is generally decreased. Comparing the dynamic and static load test results of the mechanical properties of sandstone, the difference between the compressive strength of sandstones with the same physical parameters under dynamic and static loads is small, and the dynamic elastic modulus is significantly higher than the static elastic modulus. (2) The energy dissipation of room-temperature and frozen sandstone specimens decreases gradually with the increase of moisture content, and the energy dissipation of frozen sandstone is higher than that at room temperature. Under the moisture content of 0, 0.25ω, 0.50ω, 0.75ω, and 1.00ω, the energy dissipation of frozen sandstone increased by 21.6%, 64.9%, 80.3%, 78.2%, and 83.3%, respectively compared with the room temperature state. (3) The unit explosive consumption of frozen sandstone with the same moisture content is higher than that at room temperature, with moisture contents of 0, 0.25ω, 0.50ω, 0.75ω and 1.00ω, the unit explosive consumption of sandstone in the frozen state is 20.4%, 61.3%, 60.0%, 55.6%, and 66.7% higher than that in room temperature state. (4) By fitting the unit explosive consumption values of sandstone at room temperature and frozen state, a correction model for the unit consumption of sandstone blasting in different states is obtained, which can provide correction suggestions for the unit explosive consumption for sandstone blasting engineering in cold regions.
  • loading
  • [1]
    杨更社, 吕晓涛. 富水基岩井筒冻结壁砂质泥岩力学特性试验研究 [J]. 采矿与安全工程学报, 2012, 29(4): 492–496.

    YANG G S, LV X T. Experimental study on the sandy mudstone mechanical properties of shaft sidewalls under the frozen conditions [J]. Journal of Mining & Safety Engineering, 2012, 29(4): 492–496.
    [2]
    李云鹏, 王芝银. 岩石低温单轴压缩力学特性 [J]. 北京科技大学学报, 2011, 33(6): 671–675. DOI: 10.13374/j.issn1001-053x.2011.06.004.

    LI Y P, WANG Z Y. Uniaxial compressive mechanical properties of rock at low temperature [J]. Journal of University of Science and Technology Beijing, 2011, 33(6): 671–675. DOI: 10.13374/j.issn1001-053x.2011.06.004.
    [3]
    HE R, HE L, GUAN B, et al. Mechanical properties of a typical jurassic Shaximiao sandstone under subzero and deep in situ temperature conditions [J]. Frontiers in Earth Science, 2021, 9: 770272. DOI: 10.3389/feart.2021.770272.
    [4]
    ZHANG G, LIU E, CHEN S, et al. Damage constitutive model based on energy dissipation for frozen sandstone under triaxial compression revealed by X-ray tomography [J]. Experimental Techniques, 2019, 43(5): 545–560. DOI: 10.1007/s40799-019-00309-z.
    [5]
    WANG C, LI S Y, ZHANG T W, et al. Experimental study on mechanical characteristics and fracture patterns of unfrozen/freezing saturated coal and sandstone [J]. Materials, 2019, 12(6): 992. DOI: 10.3390/ma12060992.
    [6]
    宋勇军, 杨慧敏, 张磊涛, 等. 冻结红砂岩单轴损伤破坏CT实时试验研究 [J]. 岩土力学, 2019, 40(S1): 152–160. DOI: 10.16285/j.rsm.2018.2371.

    SONG Y J, YANG H M, ZHANG L T, et al. CT real-time monitoring on uniaxial damage of frozen red sandstone [J]. Rock and Soil Mechanics, 2019, 40(S1): 152–160. DOI: 10.16285/j.rsm.2018.2371.
    [7]
    刘慧, 杨更社, 贾海梁, 等. 裂隙(孔隙)水冻结过程中岩石细观结构变化的实验研究 [J]. 岩石力学与工程学报, 2016, 35(12): 2516–2524. DOI: 10.13722/j.cnki.jrme.2016.0906.

    LIU H, YANG G S, JIA H L, et al. Experimental study on meso-structure of rock in the process of crack (pore) water freezing [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2516–2524. DOI: 10.13722/j.cnki.jrme.2016.0906.
    [8]
    夏才初, 黄继辉, 韩常领, 等. 寒区隧道岩体冻胀率的取值方法和冻胀敏感性分级 [J]. 岩石力学与工程学报, 2013, 32(9): 1876–1885. DOI: 10.3969/j.issn.1000-6915.2013.09.020.

    XIA C C, HUANG J H, HAN C L, et al. Methods of frost-heave ratio evaluation and classification of frost-heave susceptibility of tunnel surrounding rocks in cold regions [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1876–1885. DOI: 10.3969/j.issn.1000-6915.2013.09.020.
    [9]
    CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8): 907–916. DOI: 10.1016/j.pce.2006.03.007.
    [10]
    CHEN R, XIA K, DAI F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing [J]. Engineering Fracture Mechanics, 2009, 76(9): 1268–1276. DOI: 10.1016/j.engfracmech.2009.02.001.
    [11]
    李二兵, 谭跃虎, 马聪, 等. 三向压力作用下盐岩SHPB试验及动力强度研究 [J]. 岩石力学与工程学报, 2015, 34(S2): 3742–3749. DOI: 10.13722/j.cnki.jrme.2015.0594.

    LI E B, TAN Y H, MA C, et al. Split Hopkinson pressure bar test and dynamic strength research of salt rock under three-pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3742–3749. DOI: 10.13722/j.cnki.jrme.2015.0594.
    [12]
    王健, 李二兵, 谭跃虎, 等. 层状盐岩及泥岩夹层动态力学特性对比试验研究 [J]. 岩石力学与工程学报, 2017, 36(12): 3002–3011. DOI: 10.13722/j.cnki.jrme.2017.0727.

    WANG J, LI E B, TAN Y H, et al. Comparative experimental study on dynamic mechanical properties of bedded salt rock and mudstone interbed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3002–3011. DOI: 10.13722/j.cnki.jrme.2017.0727.
    [13]
    贾蓬, 卢佳亮, 毛松泽, 等. 不同饱和度冻融砂岩动态冲击压缩特性及损伤机制研究 [J]. 岩石力学与工程学报, 2023, 42(12): 2908–2918. DOI: 10.13722/j.cnki.jrme.2023.0242.

    JIA P, LU J L, MAO S Z, et al. Dynamic impact compression characteristics and damage mechanism of freeze-thaw sandstones with different saturation levels [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(12): 2908–2918. DOI: 10.13722/j.cnki.jrme.2023.0242.
    [14]
    姜亚成, 周磊, 朱哲明, 等. 冻融循环对含纯Ⅰ型裂隙围岩的动态起裂特性影响规律 [J]. 爆炸与冲击, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.

    JIANG Y C, ZHOU L, ZHU Z M, et al. Effects of freeze-thaw cycles on dynamic fracture initiation characteristics of surrounding rock with pure Ⅰ type fracture under impact loads [J]. Explosion and Shock Waves, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.
    [15]
    赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究 [J]. 四川大学学报(工程科学版), 2008, 40(2): 26–31.

    ZHAO Z H, XIE H P. Energy transfer and energy dissipation in rock deformation and fracture [J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(2): 26–31.
    [16]
    张文清, 石必明, 穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究 [J]. 采矿与安全工程学报, 2016, 33(2): 375–380. DOI: 10.13545/j.cnki.jmse.2016.02.029.

    ZHANG W Q, SHI B M, MU C M. Experimental research on failure and energy dissipation law of coal under impact load [J]. Journal of Mining & Safety Engineering, 2016, 33(2): 375–380. DOI: 10.13545/j.cnki.jmse.2016.02.029.
    [17]
    张广辉, 欧阳振华, 邓志刚, 等. 循环加载下冲击倾向性煤能量耗散与损伤演化研究 [J]. 煤炭科学技术, 2017, 45(2): 59–64. DOI: 10.13199/j.cnki.cst.2017.02.010.

    ZHANG G H, OUYANG Z H, DENG Z G, et al. Study on energy dissipation and damage evolution of bump proneness coal under cyclic loadings [J]. Coal Science and Technology, 2017, 45(2): 59–64. DOI: 10.13199/j.cnki.cst.2017.02.010.
    [18]
    李少华, 朱万成, 牛雷雷, 等. 加载速率对砂岩破碎及能耗特征的影响 [J]. 东北大学学报(自然科学版), 2017, 38(10): 1459–1463. DOI: 10.12068/j.issn.1005-3026.2017.10.018.

    LI S H, ZHU W C, NIU L L, et al. Effect of loading rate on fragmentation and energy dissipation characteristics of sandstone [J]. Journal of Northeastern University (Natural Science), 2017, 38(10): 1459–1463. DOI: 10.12068/j.issn.1005-3026.2017.10.018.
    [19]
    王宇, 翟成, 唐伟, 等. 循环冲击载荷作用下页岩动力学响应及能量耗散特征 [J]. 爆炸与冲击, 2023, 43(6): 063102. DOI: 10.11883/bzycj-2022-0248.

    WANG Y, ZHAI C, TANG W, et al. Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings [J]. Explosion and Shock Waves, 2023, 43(6): 063102. DOI: 10.11883/bzycj-2022-0248.
    [20]
    中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013 [S]. 北京: 中国计划出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013 [S]. Beijing: China Planning Press, 2013.
    [21]
    苗胜军, 刘泽京, 赵星光, 等. 循环荷载下北山花岗岩能量耗散与损伤特征 [J]. 岩石力学与工程学报, 2021, 40(5): 928–938. DOI: 10.13722/j.cnki.jrme.2020.0953.

    MIAO S J, LIU Z J, ZHAO X G, et al. Energy dissipation and damage characteristics of Beishan granite under cyclic loading and unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 928–938. DOI: 10.13722/j.cnki.jrme.2020.0953.
    [22]
    张慧梅, 陈世官, 王磊, 等. 扰动冲击下弱胶结红砂岩的能量耗散与分形特征 [J]. 岩土工程学报, 2022, 44(4): 622–631. DOI: 10.11779/CJGE202204004.

    ZHANG H M, CHEN S G, WANG L, et al. Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 622–631. DOI: 10.11779/CJGE202204004.
    [23]
    吴亮, 卢文波, 宗琦. 岩石中柱状装药爆炸能量分布 [J]. 岩土力学, 2006, 27(5): 735–739. DOI: 10.16285/j.rsm.2006.05.010.

    WU L, LU W B, ZONG Q. Distribution of explosive energy consumed by column charge in rock [J]. Rock and Soil Mechanics, 2006, 27(5): 735–739. DOI: 10.16285/j.rsm.2006.05.010.
    [24]
    申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨 [J]. 岩土工程学报, 2016, 38(10): 1775–1782. DOI: 10.11779/CJGE201610005.

    SHEN Y J, YANG G S, RONG T L, et al. Proposed scheme for freeze-thaw cycle tests on rock [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775–1782. DOI: 10.11779/CJGE201610005.
    [25]
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    [26]
    DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3): 155–179. DOI: 10.1016/0022-5096(63)90050-4.
    [27]
    王斌, 李夕兵, 尹土兵, 等. 饱水砂岩动态强度的SHPB试验研究 [J]. 岩石力学与工程学报, 2010, 29(5): 1003–1009.

    WANG B, LI X B, YIN T B, et al. Split Hopkinson pressure bar (SHPB) experiments on dynamic strength of water-saturated sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 1003–1009.
    [28]
    平琦, 马芹永, 张经双, 等. 高应变率下砂岩动态拉伸性能SHPB试验与分析 [J]. 岩石力学与工程学报, 2012, 31(S1): 3363–3369. DOI: 10.3969/j.issn.1000-6915.2012.z1.102.

    PING Q, MA Q Y, ZHANG J S, et al. SHPB test and analysis of dynamic tensile performance of sandstone under high strain rate [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3363–3369. DOI: 10.3969/j.issn.1000-6915.2012.z1.102.
    [29]
    朱晶晶, 李夕兵, 宫凤强, 等. 冲击载荷作用下砂岩的动力学特性及损伤规律 [J]. 中南大学学报(自然科学版), 2012, 43(7): 2701–2707.

    ZHU J J, LI X B, GONG F Q, et al. Experimental test and damage characteristics of sandstone under uniaxial impact compressive loads [J]. Journal of Central South University (Science and Technology), 2012, 43(7): 2701–2707.
    [30]
    贾海梁, 赵思琪, 丁顺, 等. 含水裂隙冻融过程中冻胀力演化及影响因素研究 [J]. 岩石力学与工程学报, 2022, 41(9): 1832–1845. DOI: 10.13722/j.cnki.jrme.2021.1147.

    JIA H L, ZHAO S Q, DING S, et al. Study on the evolution and influencing factors of frost heaving force of water-bearing cracks during freezing-thawing process [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1832–1845. DOI: 10.13722/j.cnki.jrme.2021.1147.
    [31]
    宗琦, 杨吕俊. 岩石中爆炸冲击波能量分布规律初探 [J]. 爆破, 1999, 16(2): 1–6.

    ZONG Q, YANG L J. Shock energy distribution of column charge in rock [J]. Blasting, 1999, 16(2): 1–6.
    [32]
    张奇. 工程爆破动力学分析及其应用 [M]. 北京: 煤炭工业出版社, 1998.

    ZHANG Q. Analyses on engineering blasting dynamics and its application [M]. Beijing: China Coal Industry Publishing House, 1998.
    [33]
    戴俊. 岩石动力学特性与爆破理论 [M]. 北京: 冶金工业出版社, 2002.
    [34]
    冷振东. 岩石爆破中爆炸能量的释放与传输机制 [D]. 武汉: 武汉大学, 2017.

    LENG Z D. Explosion energy release and transmission mechanism in rock blasting [D]. Wuhan: Wuhan University, 2017.
    [35]
    杨善元. 岩石爆破动力学基础 [M]. 北京: 煤炭工业出版社, 1993.
    [36]
    李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014.

    LI X B. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(7)

    Article Metrics

    Article views (240) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return