Citation: | HAO Fenfen, ZHAO Xiangwei, WANG Lei, CHENG Mingcan, LIU Jin. Integrated design of monorail rocket sled and motor[J]. Explosion And Shock Waves, 2024, 44(5): 052901. doi: 10.11883/bzycj-2023-0259 |
[1] |
郝芬芬, 王小龙, 周学文, 等. 基于磁流变阻尼器的火箭橇半主动动力吸振器 [J]. 兵器装备工程学报, 2023, 44(3): 55–59. DOI: 10.11809/bqzbgcxb2023.03.008.
HAO F F, WANG X L, ZHOU X W, et al. Semi-active dynamic vibration absorbers for rocket sleds based on magneto-rheological dampers [J]. Journal of Ordnance Equipment Engineering, 2023, 44(3): 55–59. DOI: 10.11809/bqzbgcxb2023.03.008.
|
[2] |
周学文, 赵项伟, 杨珍, 等. 单轨火箭橇在轨动力特性数值分析 [J]. 航空动力学报, 2022, 37(6): 1327–1335. DOI: 10.13224/j.cnki.jasp.20210254.
ZHOU X W, ZHAO X W, YANG Z, et al. Numerical analysis of dynamic characteristics of monorail rocket sled on rail [J]. Journal of Aerospace Power, 2022, 37(6): 1327–1335. DOI: 10.13224/j.cnki.jasp.20210254.
|
[3] |
MEACHAM M B, KENNETT A, TOWNSEND D J, et al. Rocket sled propelled testing of a supersonic inflatable aerodynamic decelerator [C]//Proceedings of the AIAA Aerodynamic Decelerator Systems (ADS) Conference. Daytona Beach: AIAA, 2013: 1–13. DOI: 10.2514/6.2013-1351.
|
[4] |
郑奎涛, 龚明生, 蒋大鹏, 等. 基于火箭橇的无人机碰撞民用飞机试验技术研究 [J]. 航空工程进展, 2020, 11(5): 724–729. DOI: 10.16615/j.cnki.1674-8190.2020.05.016.
ZHENG K T, GONG M S, JIANG D P, et al. Research on the test technology of civil aircraft impacted by UAV based on rocket sled [J]. Advances in Aeronautical Science and Engineering, 2020, 11(5): 724–729. DOI: 10.16615/j.cnki.1674-8190.2020.05.016.
|
[5] |
杨珍, 范坤, 胡兵, 等. 超声速单轨火箭橇动态载荷预示技术研究 [J]. 兵器装备工程学报, 2019, 40(3): 247–251. DOI: 10.11809/bqzbgcxb2019.03.050.
YANG Z, FAN K, HU B, et al. Study on dynamic load prediction of the supersonic monorail rocket sled [J]. Journal of Ordnance Equipment Engineering, 2019, 40(3): 247–251. DOI: 10.11809/bqzbgcxb2019.03.050.
|
[6] |
DANG T J, LIU Z, ZHOU X W, et al. Dynamic response of a hypersonic rocket sled considering friction and wear [J]. Journal of Spacecraft and Rockets, 2022, 59(4): 1289–1303. DOI: 10.2514/1.a35267.
|
[7] |
CHEKOV A. Transformation of U. S. missile defense policy in the context of countering hypersonic weapons [J]. World Economy and International Relations, 2023, 67(4): 40–52. DOI: 10.20542/0131-2227-2023-67-4-40-52.
|
[8] |
GAUDET B, FURFARO R. Terminal adaptive guidance for autonomous hypersonic strike weapons via reinforcement metalearning [J]. Journal of Spacecraft and Rockets, 2023, 60(1): 286–298. DOI: 10.2514/1.A35396.
|
[9] |
ZHANG L, YANG J L, DUAN T C, et al. Numerical and experimental investigation on nosebleed air jet control for hypersonic vehicle [J]. Aerospace, 2023, 10(6): 552. DOI: 10.3390/aerospace10060552.
|
[10] |
YAN P Z, ZHANG L S, WANG W J, et al. Numerical simulation of aerodynamic and aeroacoustic characteristics of subsonic rocket sled [J]. Applied Acoustics, 2021, 182: 108208. DOI: 10.1016/j.apacoust.2021.108208.
|
[11] |
MINTO D W, BOSMAJIAN N. Hypersonic test capabilities at the Holloman high-speed test track [M]//LU F K, MARREN D E. Advanced Hypersonic Test Facilities. Reston: AIAA, 2002: 499–530. DOI: 10.2514/5.9781600866678.0499.0530.
|
[12] |
WUERTEMBERGER L, PALAZOTTO A N. Evaluation of flow and failure properties of treated 4130 steel [J]. Journal of Dynamic Behavior of Materials, 2016, 2(2): 207–222. DOI: 10.1007/s40870-016-0059-1.
|
[13] |
BUTOVA S V, GERASIMOV S I, EROFEEV V I, et al. Stability of high-speed objects moving along a rocket track guide [J]. Journal of Machinery Manufacture and Reliability, 2015, 44(1): 1–5. DOI: 10.3103/S1052618815010021.
|
[14] |
GERASIMOV S I, EROFEEV V I, KAMCHATNYI V G, et al. The sliding contact condition in stability analysis of stage motion for a rocket sled track facility [J]. Journal of Machinery Manufacture and Reliability, 2018, 47(3): 221–226. DOI: 10.3103/S105261881803007X.
|
[15] |
党峰, 范坤, 谢波涛, 等. 箭橇一体化设计方法研究 [J]. 测试技术学报, 2014, 28(1): 80–83. DOI: 10.3969/j.issn.1671-7449.2014.01.015.
DANG F, FAN K, XIE B T, et al. Research on rocket and sled integration design method [J]. Journal of Test and Measurement Technology, 2014, 28(1): 80–83. DOI: 10.3969/j.issn.1671-7449.2014.01.015.
|
[16] |
胡兵, 郝芬芬, 闫华东, 等. 箭橇一体化固体火箭发动机模态分析 [J]. 兵器装备工程学报, 2022, 43(S1): 98–101. DOI: 10.11809/bqzbgcxb2022.S1.020.
HU B, HAO F F, YAN H D, et al. Modal analysis of solid rocket motor integrated with sled [J]. Journal of Ordnance Equipment Engineering, 2022, 43(S1): 98–101. DOI: 10.11809/bqzbgcxb2022.S1.020.
|
[17] |
饶翼. 高超声速火箭橇运动稳定性若干影响因素分析与数值模拟 [D]. 西安: 西安建筑科技大学, 2019: 49–53. DOI: 10.27393/d.cnki.gxazu.2019.001212.
RAO Y. Analysis and numerical simulation of several influencing factors on the stability of hypersonic rocket sled [D]. Xi’an: Xi’an University of Architecture and Technology, 2019: 49–53. DOI: 10.27393/d.cnki.gxazu.2019.001212.
|
[18] |
濮良贵, 陈庾梅. 机械设计教程 [M]. 西安: 西北工业大学出版社, 1998: 43–46.
|
[19] |
顾凯旋, 龚明生, 王磊, 等. 双轨火箭橇全时程动力学仿真分析研究 [J]. 航空工程进展, 2020, 11(2): 245–250. DOI: 10.16615/j.cnki.1674-8190.2020.02.014.
GU K X, GONG M S, WANG L, et al. Study on full time dynamics simulation of two-track rocket sled [J]. Advances in Aeronautical Science and Engineering, 2020, 11(2): 245–250. DOI: 10.16615/j.cnki.1674-8190.2020.02.014.
|
[20] |
王健. 高速火箭橇-轨道系统耦合动力学研究 [D]. 南京: 南京理工大学, 2011.
WANG J. The research for coupled dynamics of high speed rocket sled-track systems [D]. Nanjing: Nanjing University of Science and Technology, 2011.
|
[21] |
魏兵辉. 高超声速火箭橇干滑动摩擦磨损率预测研究 [D]. 西安: 西安交通大学, 2020.
WEI B H. Prediction of dry sliding wear rate of hypersonic rocket skid [D]. Xi’an: Xi’an Jiaotong University, 2020.
|
[22] |
夏洪利, 范坤, 田建明. 单轨火箭橇滚转效应预示方法 [J]. 兵器装备工程学报, 2019, 40(5): 47–51. DOI: 10.11809/bqzbgcxb2019.05.011.
XIA H L, FAN K, TIAN J M. Research on rolling effect predictable method of monorail rocket sled [J]. Journal of Ordnance Equipment Engineering, 2019, 40(5): 47–51. DOI: 10.11809/bqzbgcxb2019.05.011.
|
[23] |
VAN THOAN P, WEN G L, YIN H F, et al. Optimization design for spur gear with stress-relieving holes [J]. International Journal of Computational Methods, 2015, 12(2): 1550006. DOI: 10.1142/S0219876215500061.
|