Volume 44 Issue 5
May  2024
Turn off MathJax
Article Contents
HAO Fenfen, ZHAO Xiangwei, WANG Lei, CHENG Mingcan, LIU Jin. Integrated design of monorail rocket sled and motor[J]. Explosion And Shock Waves, 2024, 44(5): 052901. doi: 10.11883/bzycj-2023-0259
Citation: HAO Fenfen, ZHAO Xiangwei, WANG Lei, CHENG Mingcan, LIU Jin. Integrated design of monorail rocket sled and motor[J]. Explosion And Shock Waves, 2024, 44(5): 052901. doi: 10.11883/bzycj-2023-0259

Integrated design of monorail rocket sled and motor

doi: 10.11883/bzycj-2023-0259
  • Received Date: 2023-07-21
  • Rev Recd Date: 2024-01-22
  • Available Online: 2024-03-04
  • Publish Date: 2024-05-08
  • The solid rocket motor is the only power source of the system in the rocket sled test, the traditional monorail rocket sled generally consists of the rocket motor, the motor mounting components, the reinforced longitudinal beam and the slippers, in which only the test object and the motor charge are effective mass, while the rest of the structures are additional mass, so reducing the additional mass can improve the thrust-to-weight ratio of the rocket sled system. In response to the problem of excessive mass added to the components of the conventional monorail rocket sled system, an integrated rocket sled and motor structure consisting of motor and slippers is proposed. The three-dimensional Euler-Bernoulli beam unit is used to discretize the rocket sled system and obtain the optimal distribution position of the slippers, then it is found that the vibration is minimized when the middle slipper is located between the front slipper and the back slipper. Three options for connecting the slipper to the motor housing are designed: in the first option the slipper is wrapped and connected to the motor housing by serrated welds; in the second one the motor housing is stacked directly on the slipper body; and in the third one the motor housing is connected to the slipper by supported transition plates. A comparative analysis of the on-rail safety of the latter two options is performed using the sled-rail coupling dynamics method, which indicates that the mechanical environment of the integrated rocket sled is better when the sled slippers and the motor housing are connected by the supported plates as transition structures, and the additional mass of the system is reduced by 73% compared to that of the traditional monorail sled. Finally, the validation test of the integrated motor with sled validation test was implemented and the collected data were analyzed, showing that: the integrated motor with sled proposed in this paper is reasonable and feasible, and the motor vibration level is comparable to that of the traditional rocket sled.
  • loading
  • [1]
    郝芬芬, 王小龙, 周学文, 等. 基于磁流变阻尼器的火箭橇半主动动力吸振器 [J]. 兵器装备工程学报, 2023, 44(3): 55–59. DOI: 10.11809/bqzbgcxb2023.03.008.

    HAO F F, WANG X L, ZHOU X W, et al. Semi-active dynamic vibration absorbers for rocket sleds based on magneto-rheological dampers [J]. Journal of Ordnance Equipment Engineering, 2023, 44(3): 55–59. DOI: 10.11809/bqzbgcxb2023.03.008.
    [2]
    周学文, 赵项伟, 杨珍, 等. 单轨火箭橇在轨动力特性数值分析 [J]. 航空动力学报, 2022, 37(6): 1327–1335. DOI: 10.13224/j.cnki.jasp.20210254.

    ZHOU X W, ZHAO X W, YANG Z, et al. Numerical analysis of dynamic characteristics of monorail rocket sled on rail [J]. Journal of Aerospace Power, 2022, 37(6): 1327–1335. DOI: 10.13224/j.cnki.jasp.20210254.
    [3]
    MEACHAM M B, KENNETT A, TOWNSEND D J, et al. Rocket sled propelled testing of a supersonic inflatable aerodynamic decelerator [C]//Proceedings of the AIAA Aerodynamic Decelerator Systems (ADS) Conference. Daytona Beach: AIAA, 2013: 1–13. DOI: 10.2514/6.2013-1351.
    [4]
    郑奎涛, 龚明生, 蒋大鹏, 等. 基于火箭橇的无人机碰撞民用飞机试验技术研究 [J]. 航空工程进展, 2020, 11(5): 724–729. DOI: 10.16615/j.cnki.1674-8190.2020.05.016.

    ZHENG K T, GONG M S, JIANG D P, et al. Research on the test technology of civil aircraft impacted by UAV based on rocket sled [J]. Advances in Aeronautical Science and Engineering, 2020, 11(5): 724–729. DOI: 10.16615/j.cnki.1674-8190.2020.05.016.
    [5]
    杨珍, 范坤, 胡兵, 等. 超声速单轨火箭橇动态载荷预示技术研究 [J]. 兵器装备工程学报, 2019, 40(3): 247–251. DOI: 10.11809/bqzbgcxb2019.03.050.

    YANG Z, FAN K, HU B, et al. Study on dynamic load prediction of the supersonic monorail rocket sled [J]. Journal of Ordnance Equipment Engineering, 2019, 40(3): 247–251. DOI: 10.11809/bqzbgcxb2019.03.050.
    [6]
    DANG T J, LIU Z, ZHOU X W, et al. Dynamic response of a hypersonic rocket sled considering friction and wear [J]. Journal of Spacecraft and Rockets, 2022, 59(4): 1289–1303. DOI: 10.2514/1.a35267.
    [7]
    CHEKOV A. Transformation of U. S. missile defense policy in the context of countering hypersonic weapons [J]. World Economy and International Relations, 2023, 67(4): 40–52. DOI: 10.20542/0131-2227-2023-67-4-40-52.
    [8]
    GAUDET B, FURFARO R. Terminal adaptive guidance for autonomous hypersonic strike weapons via reinforcement metalearning [J]. Journal of Spacecraft and Rockets, 2023, 60(1): 286–298. DOI: 10.2514/1.A35396.
    [9]
    ZHANG L, YANG J L, DUAN T C, et al. Numerical and experimental investigation on nosebleed air jet control for hypersonic vehicle [J]. Aerospace, 2023, 10(6): 552. DOI: 10.3390/aerospace10060552.
    [10]
    YAN P Z, ZHANG L S, WANG W J, et al. Numerical simulation of aerodynamic and aeroacoustic characteristics of subsonic rocket sled [J]. Applied Acoustics, 2021, 182: 108208. DOI: 10.1016/j.apacoust.2021.108208.
    [11]
    MINTO D W, BOSMAJIAN N. Hypersonic test capabilities at the Holloman high-speed test track [M]//LU F K, MARREN D E. Advanced Hypersonic Test Facilities. Reston: AIAA, 2002: 499–530. DOI: 10.2514/5.9781600866678.0499.0530.
    [12]
    WUERTEMBERGER L, PALAZOTTO A N. Evaluation of flow and failure properties of treated 4130 steel [J]. Journal of Dynamic Behavior of Materials, 2016, 2(2): 207–222. DOI: 10.1007/s40870-016-0059-1.
    [13]
    BUTOVA S V, GERASIMOV S I, EROFEEV V I, et al. Stability of high-speed objects moving along a rocket track guide [J]. Journal of Machinery Manufacture and Reliability, 2015, 44(1): 1–5. DOI: 10.3103/S1052618815010021.
    [14]
    GERASIMOV S I, EROFEEV V I, KAMCHATNYI V G, et al. The sliding contact condition in stability analysis of stage motion for a rocket sled track facility [J]. Journal of Machinery Manufacture and Reliability, 2018, 47(3): 221–226. DOI: 10.3103/S105261881803007X.
    [15]
    党峰, 范坤, 谢波涛, 等. 箭橇一体化设计方法研究 [J]. 测试技术学报, 2014, 28(1): 80–83. DOI: 10.3969/j.issn.1671-7449.2014.01.015.

    DANG F, FAN K, XIE B T, et al. Research on rocket and sled integration design method [J]. Journal of Test and Measurement Technology, 2014, 28(1): 80–83. DOI: 10.3969/j.issn.1671-7449.2014.01.015.
    [16]
    胡兵, 郝芬芬, 闫华东, 等. 箭橇一体化固体火箭发动机模态分析 [J]. 兵器装备工程学报, 2022, 43(S1): 98–101. DOI: 10.11809/bqzbgcxb2022.S1.020.

    HU B, HAO F F, YAN H D, et al. Modal analysis of solid rocket motor integrated with sled [J]. Journal of Ordnance Equipment Engineering, 2022, 43(S1): 98–101. DOI: 10.11809/bqzbgcxb2022.S1.020.
    [17]
    饶翼. 高超声速火箭橇运动稳定性若干影响因素分析与数值模拟 [D]. 西安: 西安建筑科技大学, 2019: 49–53. DOI: 10.27393/d.cnki.gxazu.2019.001212.

    RAO Y. Analysis and numerical simulation of several influencing factors on the stability of hypersonic rocket sled [D]. Xi’an: Xi’an University of Architecture and Technology, 2019: 49–53. DOI: 10.27393/d.cnki.gxazu.2019.001212.
    [18]
    濮良贵, 陈庾梅. 机械设计教程 [M]. 西安: 西北工业大学出版社, 1998: 43–46.
    [19]
    顾凯旋, 龚明生, 王磊, 等. 双轨火箭橇全时程动力学仿真分析研究 [J]. 航空工程进展, 2020, 11(2): 245–250. DOI: 10.16615/j.cnki.1674-8190.2020.02.014.

    GU K X, GONG M S, WANG L, et al. Study on full time dynamics simulation of two-track rocket sled [J]. Advances in Aeronautical Science and Engineering, 2020, 11(2): 245–250. DOI: 10.16615/j.cnki.1674-8190.2020.02.014.
    [20]
    王健. 高速火箭橇-轨道系统耦合动力学研究 [D]. 南京: 南京理工大学, 2011.

    WANG J. The research for coupled dynamics of high speed rocket sled-track systems [D]. Nanjing: Nanjing University of Science and Technology, 2011.
    [21]
    魏兵辉. 高超声速火箭橇干滑动摩擦磨损率预测研究 [D]. 西安: 西安交通大学, 2020.

    WEI B H. Prediction of dry sliding wear rate of hypersonic rocket skid [D]. Xi’an: Xi’an Jiaotong University, 2020.
    [22]
    夏洪利, 范坤, 田建明. 单轨火箭橇滚转效应预示方法 [J]. 兵器装备工程学报, 2019, 40(5): 47–51. DOI: 10.11809/bqzbgcxb2019.05.011.

    XIA H L, FAN K, TIAN J M. Research on rolling effect predictable method of monorail rocket sled [J]. Journal of Ordnance Equipment Engineering, 2019, 40(5): 47–51. DOI: 10.11809/bqzbgcxb2019.05.011.
    [23]
    VAN THOAN P, WEN G L, YIN H F, et al. Optimization design for spur gear with stress-relieving holes [J]. International Journal of Computational Methods, 2015, 12(2): 1550006. DOI: 10.1142/S0219876215500061.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (123) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return