Volume 44 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
WANG Zhanying, QUAN Xiaobo, DUAN Jinxiong, SUN Tiezhi. Study on the impact flow field and the motion characteristics of vehicle with boost floatation aids falling on the water in a wave environment[J]. Explosion And Shock Waves, 2024, 44(11): 113901. doi: 10.11883/bzycj-2023-0260
Citation: WANG Zhanying, QUAN Xiaobo, DUAN Jinxiong, SUN Tiezhi. Study on the impact flow field and the motion characteristics of vehicle with boost floatation aids falling on the water in a wave environment[J]. Explosion And Shock Waves, 2024, 44(11): 113901. doi: 10.11883/bzycj-2023-0260

Study on the impact flow field and the motion characteristics of vehicle with boost floatation aids falling on the water in a wave environment

doi: 10.11883/bzycj-2023-0260
  • Received Date: 2023-08-02
  • Rev Recd Date: 2024-06-27
  • Available Online: 2024-06-27
  • Publish Date: 2024-11-15
  • Based on the computational fluid dynamics (CFD) numerical methods, a set of reliable and effective numerical methods for investigating the flow field and evolution characteristics of motion during the process of falling vehicle with boost floatation aids impacting the water in wave environment was established coupled with volume of fluid (VOF) multiphase flow model, k-ω SST turbulence model, Schnerr-Sauer cavitation model and Stokes fifth-order nonlinear wave theory. The numerical simulation of the process of falling into water under a horizontal cylinder showed that the difference between the experimental results and the numerical results in falling displacement was small, which verifies the validity of the numerical method of water falling impact. The wave generation results obtained by the velocity boundary numerical wave generation method were in good agreement with Stokes fifth-order nonlinear wave theory. Based on the established numerical method, numerical simulation was carried out on the water falling impact process of the vehicle with boost floatation aids under different wave sea states. The kinematic and dynamic parameters of the vehicle and evolution of water-entry cavity flow field during the impact process were analyzed, and the water falling impact characteristics of the vehicle with boost floatation aids under wave environment were summarized. The results show that the impact of wave environment on the falling impact process is mainly reflected in the motion attenuation section. The horizontal impact is much more affected by the wave environment than the vertical impact and the influence of different sea conditions on the horizontal impact of the vehicle is mainly achieved by influencing the formation and collapse of the water-entry cavity. The calculated displacement, velocity, acceleration and boost floatation aids force during the impact process of vehicle with boost floatation aids can be provided as a reference for the structural design and safety test guidance of the vehicle recovery under wave environment.
  • loading
  • [1]
    杨继锋, 刘丙杰, 陈捷, 等. 潜射弹道导弹水下大深度发射技术途径分析 [J]. 兵器装备工程学报, 2020, 41(6): 32–36. DOI: 10.11809/bqzbgcxb2020.06.007.

    YANG J F, LIU B J, CHEN J, et al. Research on underwater large depth launching technology of submarine launched ballistic missile [J]. Journal of Ordnance Equipment Engineering, 2020, 41(6): 32–36. DOI: 10.11809/bqzbgcxb2020.06.007.
    [2]
    张晓光, 李斌, 党会学, 等. 水下航行体充气上浮仿真方法研究 [J]. 兵工学报, 2020, 41(7): 1249–1261. DOI: 10.3969/j.issn.1000-1093.2020.07.001.

    ZHANG X G, LI B, DANG H X, et al. A simulation method for inflatable floating of underwater vehicle [J]. Acta Armamentarii, 2020, 41(7): 1249–1261. DOI: 10.3969/j.issn.1000-1093.2020.07.001.
    [3]
    DANG H X, ZHANG X G, LI B, et al. Multi-disciplinary co-simulation of floating process induced by pneumatic inflatable collar for underwater vehicle recovery [J]. Ocean Engineering, 2020, 216: 108008. DOI: 10.1016/j.oceaneng.2020.108008.
    [4]
    王晓辉, 李鹏, 孙士明, 等. 射弹高速入水尾拍载荷和弹道特性的数值研究 [J]. 船舶力学, 2022, 26(8): 1111–1119. DOI: 10.3969/j.issn.1007-7294.2022.08.001.

    WANG X H, LI P, SUN S M, et al. Numerical study on hydrodynamic and ballistic characteristics of projectile’s high-speed water-entry process [J]. Journal of Ship Mechanics, 2022, 26(8): 1111–1119. DOI: 10.3969/j.issn.1007-7294.2022.08.001.
    [5]
    DENG F, SUN X Y, CHI F H, et al. A numerical study on the water entry of cylindrical trans-media vehicles [J]. Aerospace, 2022, 9(12): 805. DOI: 10.3390/aerospace9120805.
    [6]
    WU X C, CHANG X, LIU S W, et al. Numerical study on the water entry impact forces of an air-launched underwater glider under wave conditions [J]. Shock and Vibration, 2022, 2022: 4330043. DOI: 10.1155/2022/4330043.
    [7]
    邹田春, 高飞, 魏家威, 等. 圆柱体垂直入水三维数值模拟及影响因素研究 [J]. 振动与冲击, 2022, 41(10): 177–185. DOI: 10.13465/j.cnki.jvs.2022.10.023.

    ZOU T C, GAO F, WEI J W, et al. Three-dimensional numerical simulation and influencing factors study on the vertical water entry of a circular cylinder [J]. Journal of Vibration and Shock, 2022, 41(10): 177–185. DOI: 10.13465/j.cnki.jvs.2022.10.023.
    [8]
    祁晓斌, 刘喜燕, 王瑞, 等. 高速射弹小角度入水数值模拟研究 [J]. 中国造船, 2022, 63(3): 31–39. DOI: 10.3969/j.issn.1000-4882.2022.03.004.

    QI X B, LIU X Y, WANG R, et al. Numerical simulation of water entry for high-speed projectile at small angle [J]. Shipbuilding of China, 2022, 63(3): 31–39. DOI: 10.3969/j.issn.1000-4882.2022.03.004.
    [9]
    宋武超, 王聪, 魏英杰, 等. 不同头型回转体低速倾斜入水过程流场特性数值模拟 [J]. 北京理工大学学报, 2017, 37(7): 661–666,671. DOI: 10.15918/j.tbit1001-0645.2017.07.001.

    SONG W C, WANG C, WEI Y J, et al. Numerical simulation of the flow field characteristics of low speed oblique water entry of revolution body [J]. Transactions of Beijing Institute of Technology, 2017, 37(7): 661–666,671. DOI: 10.15918/j.tbit1001-0645.2017.07.001.
    [10]
    DONG L Y, WEI Z Y, ZHOU H Y, et al. Numerical study on the water entry of a freely falling unmanned aerial-underwater vehicle [J]. Journal of Marine Science and Engineering, 2023, 11(3): 552. DOI: 10.3390/jmse11030552.
    [11]
    YUAN K, YU J W, GU X, et al. Numerical investigation on drag characteristics of the truncated hemispherical-nose projectile in vertical water entry [J]. Ships and Offshore Structures, 2023, 18(12): 1726–1736. DOI: 10.1080/17445302.2022.2140526.
    [12]
    HUANG L F, TAVAKOLI S, LI M H, et al. CFD analyses on the water entry process of a freefall lifeboat [J]. Ocean Engineering, 2021, 232: 109115. DOI: 10.1016/j.oceaneng.2021.109115.
    [13]
    史崇镔. 跨介质结构物出入水多相流体动力学特性研究 [D]. 大连: 大连理工大学, 2021. DOI: 10.26991/d.cnki.gdllu.2021.002803.

    SHI C B. Study on the multiphase fluid hydrodynamics characteristics of water entry and water exit for trans-medium structures [D]. Dalian: Dalian University of Technology, 2021. DOI: 10.26991/d.cnki.gdllu.2021.002803.
    [14]
    杨晓光, 党建军, 王鹏, 等. 波面环境对高速入水载荷及弹道特性影响试验研究 [J]. 西北工业大学学报, 2021, 39(6): 1259–1265. DOI: 10.3969/j.issn.1000-2758.2021.06.011.

    YANG X G, DANG J J, WANG P, et al. Experimental research on influence of wave environment on high-speed water entry load and trajectory characteristics [J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1259–1265. DOI: 10.3969/j.issn.1000-2758.2021.06.011.
    [15]
    李治涛, 赵世平, 卢丙举, 等. 高速旋转射弹波浪入水多相流场与弹道特征数值仿真研究 [J]. 振动与冲击, 2022, 41(8): 55–71. DOI: 10.13465/j.cnki.jvs.2022.08.007.

    LI Z T, ZHAO S P, LU B J, et al. Numerical simulation of multiphase flow field and trajectory characteristics of high-speed spinning projectile entry water in wave [J]. Journal of Vibration and Shock, 2022, 41(8): 55–71. DOI: 10.13465/j.cnki.jvs.2022.08.007.
    [16]
    ZHANG Y F, MA S, SHAO W B, et al. Numerical investigation on the water entry of curved wedge-shaped sections into waves [J]. Ocean Engineering, 2023, 275: 114155. DOI: 10.1016/j.oceaneng.2023.114155.
    [17]
    ZHAO C Z, WANG Q, LU H C, et al. Vertical water entry of a hydrophobic sphere into waves: numerical computations and experiments [J]. Physics of Fluids, 2023, 35(7): 073324. DOI: 10.1063/5.0160041.
    [18]
    CHENG Y, YUAN D C, JI C Y. Water entry of a floating body into waves with air cavity effect [J]. Journal of Fluids and Structures, 2021, 104: 103302. DOI: 10.1016/j.jfluidstructs.2021.103302.
    [19]
    赵蛟龙, 孙龙泉, 张忠宇, 等. 柱形空腔结构落水载荷及冲击响应研究 [J]. 振动与冲击, 2013, 32(20): 113–118. DOI: 10.3969/j.issn.1000-3835.2013.20.022.

    ZHAO J L, SUN L Q, ZHANG Z Y, et al. Hydrodynamic loads and impact response for a water entry of a cylindrical cavitary structure [J]. Journal of Vibration and Shock, 2013, 32(20): 113–118. DOI: 10.3969/j.issn.1000-3835.2013.20.022.
    [20]
    陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析 [J]. 爆炸与冲击, 2018, 38(5): 1155–1164. DOI: 10.11883/bzycj-2017-0387.

    CHEN Y, WU L, ZHEN G W, et al. Numerical analysis of the water entry process of a projectile with a circular airbag [J]. Explosion and Shock Waves, 2018, 38(5): 1155–1164. DOI: 10.11883/bzycj-2017-0387.
    [21]
    陈开颜, 陈辉, 魏海鹏, 等. 带囊回转体落水仿真与试验研究 [J]. 船舶力学, 2022, 26(3): 315–322. DOI: 10.3969/j.issn.1007-7294.2022.03.001.

    CHEN K Y, CHEN H, WEI H P, et al. Simulation and experimental study on a cylinder with airbags falling into water [J]. Journal of Ship Mechanics, 2022, 26(3): 315–322. DOI: 10.3969/j.issn.1007-7294.2022.03.001.
    [22]
    包健, 马贵辉, 孙龙泉, 等. 带椭球形气囊航行体落水-上浮过程仿真 [J]. 兵工学报, 2024, 45(1): 206–218. DOI: 10.12382/bgxb.2022.0503.

    BAO J, MA G H, SUN L Q, et al. Simulation of falling-floating process of vehicle with ellipsoidal airbags [J]. Acta Armamentarii, 2024, 45(1): 206–218. DOI: 10.12382/bgxb.2022.0503.
    [23]
    STEELANT J, DICK E. Modeling of laminar-turbulent transition for high freestream turbulence [J]. Journal of Fluids Engineering, 2001, 123(1): 22–30. DOI: 10.1115/1.1340623.
    [24]
    PLESSET M S. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics, 1949, 16(3): 277–282. DOI: 10.1115/1.4009975.
    [25]
    FENTON J D. A fifth-order stokes theory for steady waves [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1985, 111(2): 216–234. DOI: 10.1061/(ASCE)0733-950X(1985)111:2(216).
    [26]
    KIM J, O’SULLIVAN J, READ A. Ringing analysis of a vertical cylinder by Euler overlay method [C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro: American Society of Mechanical Engineers, 2012: 855–866. DOI: 10.1115/OMAE2012-84091.
    [27]
    WEI Z Y, HU C H. An experimental study on water entry of horizontal cylinders [J]. Journal of Marine Science and Technology, 2014, 19(3): 338–350. DOI: 10.1007/s00773-013-0252-z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(1)

    Article Metrics

    Article views (87) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return