Citation: | WANG Zhanying, QUAN Xiaobo, DUAN Jinxiong, SUN Tiezhi. Study on the impact flow field and the motion characteristics of vehicle with boost floatation aids falling on the water in a wave environment[J]. Explosion And Shock Waves, 2024, 44(11): 113901. doi: 10.11883/bzycj-2023-0260 |
[1] |
杨继锋, 刘丙杰, 陈捷, 等. 潜射弹道导弹水下大深度发射技术途径分析 [J]. 兵器装备工程学报, 2020, 41(6): 32–36. DOI: 10.11809/bqzbgcxb2020.06.007.
YANG J F, LIU B J, CHEN J, et al. Research on underwater large depth launching technology of submarine launched ballistic missile [J]. Journal of Ordnance Equipment Engineering, 2020, 41(6): 32–36. DOI: 10.11809/bqzbgcxb2020.06.007.
|
[2] |
张晓光, 李斌, 党会学, 等. 水下航行体充气上浮仿真方法研究 [J]. 兵工学报, 2020, 41(7): 1249–1261. DOI: 10.3969/j.issn.1000-1093.2020.07.001.
ZHANG X G, LI B, DANG H X, et al. A simulation method for inflatable floating of underwater vehicle [J]. Acta Armamentarii, 2020, 41(7): 1249–1261. DOI: 10.3969/j.issn.1000-1093.2020.07.001.
|
[3] |
DANG H X, ZHANG X G, LI B, et al. Multi-disciplinary co-simulation of floating process induced by pneumatic inflatable collar for underwater vehicle recovery [J]. Ocean Engineering, 2020, 216: 108008. DOI: 10.1016/j.oceaneng.2020.108008.
|
[4] |
王晓辉, 李鹏, 孙士明, 等. 射弹高速入水尾拍载荷和弹道特性的数值研究 [J]. 船舶力学, 2022, 26(8): 1111–1119. DOI: 10.3969/j.issn.1007-7294.2022.08.001.
WANG X H, LI P, SUN S M, et al. Numerical study on hydrodynamic and ballistic characteristics of projectile’s high-speed water-entry process [J]. Journal of Ship Mechanics, 2022, 26(8): 1111–1119. DOI: 10.3969/j.issn.1007-7294.2022.08.001.
|
[5] |
DENG F, SUN X Y, CHI F H, et al. A numerical study on the water entry of cylindrical trans-media vehicles [J]. Aerospace, 2022, 9(12): 805. DOI: 10.3390/aerospace9120805.
|
[6] |
WU X C, CHANG X, LIU S W, et al. Numerical study on the water entry impact forces of an air-launched underwater glider under wave conditions [J]. Shock and Vibration, 2022, 2022: 4330043. DOI: 10.1155/2022/4330043.
|
[7] |
邹田春, 高飞, 魏家威, 等. 圆柱体垂直入水三维数值模拟及影响因素研究 [J]. 振动与冲击, 2022, 41(10): 177–185. DOI: 10.13465/j.cnki.jvs.2022.10.023.
ZOU T C, GAO F, WEI J W, et al. Three-dimensional numerical simulation and influencing factors study on the vertical water entry of a circular cylinder [J]. Journal of Vibration and Shock, 2022, 41(10): 177–185. DOI: 10.13465/j.cnki.jvs.2022.10.023.
|
[8] |
祁晓斌, 刘喜燕, 王瑞, 等. 高速射弹小角度入水数值模拟研究 [J]. 中国造船, 2022, 63(3): 31–39. DOI: 10.3969/j.issn.1000-4882.2022.03.004.
QI X B, LIU X Y, WANG R, et al. Numerical simulation of water entry for high-speed projectile at small angle [J]. Shipbuilding of China, 2022, 63(3): 31–39. DOI: 10.3969/j.issn.1000-4882.2022.03.004.
|
[9] |
宋武超, 王聪, 魏英杰, 等. 不同头型回转体低速倾斜入水过程流场特性数值模拟 [J]. 北京理工大学学报, 2017, 37(7): 661–666,671. DOI: 10.15918/j.tbit1001-0645.2017.07.001.
SONG W C, WANG C, WEI Y J, et al. Numerical simulation of the flow field characteristics of low speed oblique water entry of revolution body [J]. Transactions of Beijing Institute of Technology, 2017, 37(7): 661–666,671. DOI: 10.15918/j.tbit1001-0645.2017.07.001.
|
[10] |
DONG L Y, WEI Z Y, ZHOU H Y, et al. Numerical study on the water entry of a freely falling unmanned aerial-underwater vehicle [J]. Journal of Marine Science and Engineering, 2023, 11(3): 552. DOI: 10.3390/jmse11030552.
|
[11] |
YUAN K, YU J W, GU X, et al. Numerical investigation on drag characteristics of the truncated hemispherical-nose projectile in vertical water entry [J]. Ships and Offshore Structures, 2023, 18(12): 1726–1736. DOI: 10.1080/17445302.2022.2140526.
|
[12] |
HUANG L F, TAVAKOLI S, LI M H, et al. CFD analyses on the water entry process of a freefall lifeboat [J]. Ocean Engineering, 2021, 232: 109115. DOI: 10.1016/j.oceaneng.2021.109115.
|
[13] |
史崇镔. 跨介质结构物出入水多相流体动力学特性研究 [D]. 大连: 大连理工大学, 2021. DOI: 10.26991/d.cnki.gdllu.2021.002803.
SHI C B. Study on the multiphase fluid hydrodynamics characteristics of water entry and water exit for trans-medium structures [D]. Dalian: Dalian University of Technology, 2021. DOI: 10.26991/d.cnki.gdllu.2021.002803.
|
[14] |
杨晓光, 党建军, 王鹏, 等. 波面环境对高速入水载荷及弹道特性影响试验研究 [J]. 西北工业大学学报, 2021, 39(6): 1259–1265. DOI: 10.3969/j.issn.1000-2758.2021.06.011.
YANG X G, DANG J J, WANG P, et al. Experimental research on influence of wave environment on high-speed water entry load and trajectory characteristics [J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1259–1265. DOI: 10.3969/j.issn.1000-2758.2021.06.011.
|
[15] |
李治涛, 赵世平, 卢丙举, 等. 高速旋转射弹波浪入水多相流场与弹道特征数值仿真研究 [J]. 振动与冲击, 2022, 41(8): 55–71. DOI: 10.13465/j.cnki.jvs.2022.08.007.
LI Z T, ZHAO S P, LU B J, et al. Numerical simulation of multiphase flow field and trajectory characteristics of high-speed spinning projectile entry water in wave [J]. Journal of Vibration and Shock, 2022, 41(8): 55–71. DOI: 10.13465/j.cnki.jvs.2022.08.007.
|
[16] |
ZHANG Y F, MA S, SHAO W B, et al. Numerical investigation on the water entry of curved wedge-shaped sections into waves [J]. Ocean Engineering, 2023, 275: 114155. DOI: 10.1016/j.oceaneng.2023.114155.
|
[17] |
ZHAO C Z, WANG Q, LU H C, et al. Vertical water entry of a hydrophobic sphere into waves: numerical computations and experiments [J]. Physics of Fluids, 2023, 35(7): 073324. DOI: 10.1063/5.0160041.
|
[18] |
CHENG Y, YUAN D C, JI C Y. Water entry of a floating body into waves with air cavity effect [J]. Journal of Fluids and Structures, 2021, 104: 103302. DOI: 10.1016/j.jfluidstructs.2021.103302.
|
[19] |
赵蛟龙, 孙龙泉, 张忠宇, 等. 柱形空腔结构落水载荷及冲击响应研究 [J]. 振动与冲击, 2013, 32(20): 113–118. DOI: 10.3969/j.issn.1000-3835.2013.20.022.
ZHAO J L, SUN L Q, ZHANG Z Y, et al. Hydrodynamic loads and impact response for a water entry of a cylindrical cavitary structure [J]. Journal of Vibration and Shock, 2013, 32(20): 113–118. DOI: 10.3969/j.issn.1000-3835.2013.20.022.
|
[20] |
陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析 [J]. 爆炸与冲击, 2018, 38(5): 1155–1164. DOI: 10.11883/bzycj-2017-0387.
CHEN Y, WU L, ZHEN G W, et al. Numerical analysis of the water entry process of a projectile with a circular airbag [J]. Explosion and Shock Waves, 2018, 38(5): 1155–1164. DOI: 10.11883/bzycj-2017-0387.
|
[21] |
陈开颜, 陈辉, 魏海鹏, 等. 带囊回转体落水仿真与试验研究 [J]. 船舶力学, 2022, 26(3): 315–322. DOI: 10.3969/j.issn.1007-7294.2022.03.001.
CHEN K Y, CHEN H, WEI H P, et al. Simulation and experimental study on a cylinder with airbags falling into water [J]. Journal of Ship Mechanics, 2022, 26(3): 315–322. DOI: 10.3969/j.issn.1007-7294.2022.03.001.
|
[22] |
包健, 马贵辉, 孙龙泉, 等. 带椭球形气囊航行体落水-上浮过程仿真 [J]. 兵工学报, 2024, 45(1): 206–218. DOI: 10.12382/bgxb.2022.0503.
BAO J, MA G H, SUN L Q, et al. Simulation of falling-floating process of vehicle with ellipsoidal airbags [J]. Acta Armamentarii, 2024, 45(1): 206–218. DOI: 10.12382/bgxb.2022.0503.
|
[23] |
STEELANT J, DICK E. Modeling of laminar-turbulent transition for high freestream turbulence [J]. Journal of Fluids Engineering, 2001, 123(1): 22–30. DOI: 10.1115/1.1340623.
|
[24] |
PLESSET M S. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics, 1949, 16(3): 277–282. DOI: 10.1115/1.4009975.
|
[25] |
FENTON J D. A fifth-order stokes theory for steady waves [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1985, 111(2): 216–234. DOI: 10.1061/(ASCE)0733-950X(1985)111:2(216).
|
[26] |
KIM J, O’SULLIVAN J, READ A. Ringing analysis of a vertical cylinder by Euler overlay method [C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro: American Society of Mechanical Engineers, 2012: 855–866. DOI: 10.1115/OMAE2012-84091.
|
[27] |
WEI Z Y, HU C H. An experimental study on water entry of horizontal cylinders [J]. Journal of Marine Science and Technology, 2014, 19(3): 338–350. DOI: 10.1007/s00773-013-0252-z.
|