Citation: | NI Hui. Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening[J]. Explosion And Shock Waves, 2024, 44(2): 023202. doi: 10.11883/bzycj-2023-0262 |
[1] |
HU Y X, YAO Z Q, HU J. 3-D FEM simulation of laser shock processing [J]. Surface and Coatings Technology, 2006, 201(3/4): 1426–1435. DOI: 10.1016/j.surfcoat.2006.02.018.
|
[2] |
吴先前, 段祝平, 黄晨光, 等. 激光冲击强化过程中蒸气等离子体压力计算的耦合模型 [J]. 爆炸与冲击, 2012, 32(1): 1–7. DOI: 10.11883/1001-1455(2012)01-0001-07.
WU X Q, DUAN Z P, HUANG C G, et al. A coupling model for computing plasma pressure induced by laser shock peening [J]. Explosion and Shock Waves, 2012, 32(1): 1–7. DOI: 10.11883/1001-1455(2012)01-0001-07.
|
[3] |
DEVAUX D, FABBRO R, TOLLIER L, et al. Generation of shock waves by laser-induced plasma in confined geometry [J]. Journal of Applied Physics, 1993, 74(4): 2268–2273. DOI: 10.1063/1.354710.
|
[4] |
WU B X, SHIN Y C. Laser pulse transmission through the water breakdown plasma in laser shock peening [J]. Applied Physics Letters, 2006, 88(4): 041116. DOI: 10.1063/1.2168022.
|
[5] |
WU X Q, DUAN Z P, SONG H W, et al. Shock pressure induced by glass-confined laser shock peening: experiments, modeling and simulation [J]. Journal of Applied Physics, 2011, 110(5): 053112. DOI: 10.1063/1.3633266.
|
[6] |
XIONG Q L, SHIMADA T, KITAMURA T, et al. Atomic investigation of effects of coating and confinement layer on laser shock peening [J]. Optics & Laser Technology, 2020, 131: 106409. DOI: 10.1016/j.optlastec.2020.106409.
|
[7] |
RONDEPIERRE A, ÜNALDI S, ROUCHAUSSE Y, et al. Beam size dependency of a laser-induced plasma in confined regime: shortening of the plasma release. Influence on pressure and thermal loading [J]. Optics & Laser Technology, 2021, 135(1): 106689. DOI: 10.1016/j.optlastec.2020.106689.
|
[8] |
WU B X, TAO S, LEI S T. Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments [J]. Applied Surface Science, 2010, 256(13): 4376–4382. DOI: 10.1016/j.apsusc.2010.02.034.
|
[9] |
NAKANO H, MIYAUTI S, BUTANI N, et al. Femtosecond laser peening of stainless steel [J]. Journal of Laser Micro/Nanoengineering, 2009, 4(1): 35–38. DOI: 10.2961/jlmn.2009.01.0007.
|
[10] |
LEE D, KANNATEY-ASIBU JR E. Experimental investigation of laser shock peening using femtosecond laser pulses [J]. Journal of Laser Applications, 2011, 23(2): 022004. DOI: 10.2351/1.3573370.
|
[11] |
AGEEV E I, BYCHENKOV V Y, IONIN A A, et al. Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness [J]. Applied Physics Letters, 2016, 109(21): 211902. DOI: 10.1063/1.4968594.
|
[12] |
SANO T, EIMURA T, KASHIWABARA R, et al. Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions [J]. Journal of Laser Applications, 2017, 29(1): 012005. DOI: 10.2351/1.4967013.
|
[13] |
HOPPIUS J S, KUKREJA L M, KNYAZEVA M, et al. On femtosecond laser shock peening of stainless steel AISI 316 [J]. Applied Surface Science, 2018, 435: 1120–1124. DOI: 10.1016/j.apsusc.2017.11.145.
|
[14] |
WANG H, PÖHL F, YAN K, et al. Effects of femtosecond laser shock peening in distilled water on the surface characterizations of NiTi shape memory alloy [J]. Applied Surface Science, 2019, 471: 869–877. DOI: 10.1016/j.apsusc.2018.12.087.
|
[15] |
AGEEV E I, ANDREEVA Y M, IONIN A A, et al. Single-shot femtosecond laser processing of Al-alloy surface: an interplay between Mbar shock waves, enhanced microhardness, residual stresses, and chemical modification [J]. Optics & Laser Technology, 2020, 126: 106131. DOI: 10.1016/j.optlastec.2020.106131.
|
[16] |
CHEN L, WANG Z S, GAO S, et al. Investigation on femtosecond laser shock peening of commercially pure copper without ablative layer and confinement layer in air [J]. Optics & Laser Technology, 2022, 153: 108207. DOI: 10.1016/j.optlastec.2022.108207.
|
[17] |
TAN S, WU J J, ZHANG Y, et al. A model of ultra-short pulsed laser ablation of metal with considering plasma shielding and non-fourier effect [J]. Energies, 2018, 11(11): 3163. DOI: 10.3390/en11113163.
|
[18] |
KIRAN KUMAR K, SAMUEL G L, SHUNMUGAM M S. Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy [J]. Journal of Materials Processing Technology, 2019, 263: 266–275. DOI: 10.1016/j.jmatprotec.2018.08.028.
|
[19] |
FAIRAND B P, CLAUER A H. Laser generation of high-amplitude stress waves in materials [J]. Journal of Applied Physics, 1979, 50(3): 1497–1502. DOI: 10.1063/1.326137.
|
[20] |
FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry [J]. Journal of Applied Physics, 1990, 68(2): 775–784. DOI: 10.1063/1.346783.
|
[21] |
PEYRE P, SOLLIER A, CHAIEB I, et al. FEM simulation of residual stresses induced by laser peening [J]. The European Physical Journal Applied Physics, 2003, 23(2): 83–98. DOI: 10.1051/epjap:2003037.
|
[22] |
WU B X, SHIN Y C. A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments [J]. Journal of Applied Physics, 2005, 97(11): 113517. DOI: 10.1063/1.1915537.
|
[23] |
LAVILLE S, VIDAL F, JOHNSTON T W, et al. Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors [J]. Physical Review E, 2002, 66(6): 066415. DOI: 10.1103/PhysRevE.66.066415.
|
[24] |
RETHFELD B, SOKOLOWSKI-TINTEN K, VON DER LINDE D, et al. Timescales in the response of materials to femtosecond laser excitation [J]. Applied Physics A, 2004, 79(4): 767–769. DOI: 10.1007/s00339-004-2805-9.
|
[25] |
WU B X, SHIN Y C. A simple model for high fluence ultra-short pulsed laser metal ablation [J]. Applied Surface Science, 2007, 253(8): 4079–4084. DOI: 10.1016/j.apsusc.2006.09.007.
|
[26] |
ALEXOPOULOU V E, MARKOPOULOS A P. A critical assessment regarding two-temperature models: an investigation of the different forms of two-temperature models, the various ultrashort pulsed laser models and computational methods [J]. Archives of Computational Methods in Engineering, 2023, 31(6). DOI: 10.1007/s11831-023-09974-1.
|
[27] |
LIN Z B, ZHIGILEI L V, CELLI V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium [J]. Physical Review B, 2008, 77(7): 075133. DOI: 10.1103/PhysRevB.77.075133.
|
[28] |
ZHANG Z Y, NIAN Q, DOUMANIDIS C C, et al. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing [J]. Journal of Applied Physics, 2018, 123(5): 054901. DOI: 10.1063/1.5021894.
|
[29] |
WU B X, SHIN Y C. A one-dimensional hydrodynamic model for pressures induced near the coating-water interface during laser shock peening [J]. Journal of Applied Physics, 2007, 101(2): 023510. DOI: 10.1063/1.2426981.
|
[30] |
ZHANG N, ZHU X N, YANG J J, et al. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum [J]. Physical Review Letters, 2007, 99(16): 167602. DOI: 10.1103/PhysRevLett.99.167602.
|