Citation: | QIN Shuai, LIU Hao, CHEN Li, ZHANG Lei. Outlier detection algorithms for penetration depth data of concrete targets combined with prior knowledge[J]. Explosion And Shock Waves, 2024, 44(3): 031406. doi: 10.11883/bzycj-2023-0287 |
[1] |
张磊, 吴昊, 赵强, 等. 基于数据挖掘技术的地下工程目标毁伤效应计算方法 [J]. 爆炸与冲击, 2021, 41(3): 031101. DOI: 10.11883/bzycj-2020-0114.
ZHANG L, WU H, ZHAO Q, et al. Calculation method of damage effects of underground engineering objectives based on data mining technology [J]. Explosion and Shock Waves, 2021, 41(3): 031101. DOI: 10.11883/bzycj-2020-0114.
|
[2] |
LI Q L, WANG Y, SHAO Y D, et al. A comparative study on the most effective machine learning model for blast loading prediction: from GBDT to Transformer [J]. Engineering Structures, 2023, 276: 115310. DOI: 10.1016/j.engstruct.2022.115310.
|
[3] |
ALMUSTAFA M K, NEHDI M L. Machine learning model for predicting structural response of RC slabs exposed to blast loading [J]. Engineering Structures, 2020, 221: 111109. DOI: 10.1016/j.engstruct.2020.111109.
|
[4] |
ALMUSTAFA M K, NEHDI M L. Machine learning model for predicting structural response of RC columns subjected to blast loading [J]. International Journal of Impact Engineering, 2022, 162: 104145. DOI: 10.1016/j.ijimpeng.2021.104145.
|
[5] |
ZHAO C F, ZHU Y F, ZHOU Z H. Machine learning-based approaches for predicting the dynamic response of RC slabs under blast loads [J]. Engineering Structures, 2022, 273: 115104. DOI: 10.1016/j.engstruct.2022.115104.
|
[6] |
NETO L B, SALEH M, PICKERD V, et al. Rapid mechanical evaluation of quadrangular steel plates subjected to localised blast loadings [J]. International Journal of Impact Engineering, 2020, 137: 103461. DOI: 10.1016/j.ijimpeng.2019.103461.
|
[7] |
WANG H Z, BAH M J, HAMMAD M. Progress in outlier detection techniques: a survey [J]. IEEE Access, 2019, 7: 107964–108000. DOI: 10.1109/ACCESS.2019.2932769.
|
[8] |
PANG G S, SHEN C H, CAO L B, et al. Deep learning for anomaly detection: a review [J]. ACM Computing Surveys, 2021, 54(2): 38. DOI: 10.1145/3439950.
|
[9] |
MURALIDHAR N, ISLAM M R, MARWAH M, et al. Incorporating prior domain knowledge into deep neural networks [C]//2018 IEEE International Conference on Big Data. Seattle: IEEE, 2018: 36–45. DOI: 10.1109/BigData.2018.8621955.
|
[10] |
ZHANG W E, SHENG Q Z, ALHAZMI A, et al. Adversarial attacks on deep-learning models in natural language processing: a survey [J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(3): 24. DOI: 10.1145/3374217.
|
[11] |
VON RUEDEN L, MAYER S, BECKH K, et al. Informed machine learning: a taxonomy and survey of integrating prior knowledge into learning systems [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 614–633. DOI: 10.1109/TKDE.2021.3079836.
|
[12] |
FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
|
[13] |
文鹤鸣. 混凝土靶板冲击响应的经验公式 [J]. 爆炸与冲击, 2003, 23(3): 267–274.
WEN H M. Empirical equations for the impact response of concrete targets [J]. Explosion and Shock Waves, 2003, 23(3): 267–274.
|
[14] |
CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
|
[15] |
LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
|
[16] |
任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016: 54−58.
|
[17] |
陈小伟. 穿甲/侵彻力学的理论建模与分析 [M]. 北京: 科学出版社, 2019.
|
[18] |
王清华, 徐丰, 郭伟国. 基于ANN-GA协同寻优的动态拉伸试样尺寸优化方法 [J]. 爆炸与冲击, 2022, 42(1): 014201. DOI: 10.11883/bzycj-2021-0218.
WANG Q H, XU F, GUO W G. A method of geometry optimization for dynamic tensile specimen based on artificial neural network and genetic algorithm [J]. Explosion and Shock Waves, 2022, 42(1): 014201. DOI: 10.11883/bzycj-2021-0218.
|
[19] |
李秦超, 姚成宝, 程帅, 等. 神经网络状态方程在强爆炸冲击波数值模拟中的应用 [J]. 爆炸与冲击, 2023, 43(4): 044202. DOI: 10.11883/bzycj-2022-0222.
LI Q C, YAO C B, CHENG S, et al. Application of the neural network equation of state in numerical simulation of intense blast wave [J]. Explosion and Shock Waves, 2023, 43(4): 044202. DOI: 10.11883/bzycj-2022-0222.
|
[20] |
MUSTAPHA A, MOHAMED L, ALI K. An overview of gradient descent algorithm optimization in machine learning: Application in the ophthalmology field [C]//The 3rd International Conference on Smart Applications and Data Analysis. Marrakesh, Morocco: Springer, 2020: 349–359. DOI: 10.1007/978-3-030-45183-7_27.
|
[21] |
ZHANG L, WANG J M, JIANG M W, et al. Evaluation method based on random forests for empirical algorithms of penetration effects [C]//2022 International Conference on Machine Learning, Cloud Computing and Intelligent Mining (MLCCIM). Xiamen, Fujian, China: IEEE, 2022: 73–78. DOI: 10.1109/MLCCIM55934.2022.00020.
|
[22] |
FULLARD K, BARR P. Development of design guidance for low velocity impacts on concrete floors [J]. Nuclear Engineering and Design, 1989, 115(1): 113–120. DOI: 10.1016/0029-5493(89)90264-1.
|
[23] |
YOUNG C W. Penetration equations [R]. Albuquerque, NM, United States: Sandia National Lab, 1997. DOI: 10.2172/562498.
|