Citation: | WU Shuogang, DU Chengxin, ZHOU Feng, GAO Guangfa, LYU Wenzheng, CHEN Xi. Damage characteristic of target penetrated by WF/Zr-MG and 93W rods[J]. Explosion And Shock Waves, 2024, 44(4): 043302. doi: 10.11883/bzycj-2023-0312 |
[1] |
WANG H K, LI Z Z, ZHANG Z H, et al. Microstructure evolution of 6252 armor steel under hypervelocity impact [J]. International Journal of Impact Engineering, 2022, 170(12): 104356. DOI: 10.1016/j.ijimpeng.2022.104356.
|
[2] |
HE Y, ZHANG Z, YANG S, et al. Deformation and fracture mechanism of Ti-6Al-4V target at high and hyper velocity impact [J]. International Journal of Impact Engineering, 2022, 169(12): 104312. DOI: 10.1016/j.ijimpeng.2022.104312.
|
[3] |
ZHENG Z, ZHU D, DING X, et al. Hypervelocity impact damage and microstructure evolution of woven Ti6Al4V fabric reinforced aluminum matrix composites [J]. Materials & Design, 2016, 108(10): 86–92. DOI: 10.1016/j.matdes.2016.06.075.
|
[4] |
ZHOU F, DU C X, CHENG C, et al. Penetration performance and fragmentation mechanism behind target of tungsten fibre/zirconium-based bulk metallic glass matrix composite rod [J]. International Journal of Refractory Metals and Hard Materials, 2023, 112(4): 106160. DOI: 10.1016/j.ijrmhm.2023.106160.
|
[5] |
李名锐, 冯娜, 蔡青山, 等. 93W杆式弹超高速撞击多层Q345钢靶毁伤及微观分析 [J]. 爆炸与冲击, 2021, 41(2): 021408. DOI: 10.11883/bzycj-2020-0303.
LI M R, FENG N, CAI Q S, et al. Damage of a multi-layer Q345 target under hypervelocity impact of a rod-shaped 93W projectile [J]. Explosion And Shock Waves, 2021, 41(2): 021408. DOI: 10.11883/bzycj-2020-0303.
|
[6] |
高华, 熊超, 殷军辉. 弹丸侵彻多层异质复合靶板中装甲钢变形细观和微观机理研究 [J]. 兵工学报, 2018, 39(8): 1565–1575. DOI: 10.3969/j.issn.1000-1093.2018.08.013.
GAO H, XIONG C, YIN J H. Research on macroscopic and microscopic mechanisms of deformation of armor steel in multilayer heterogeneous compositetarget subjected to projectile [J]. Acta Armamentarii, 2018, 39(8): 1565–1575. DOI: 10.3969/j.issn.1000-1093.2018.08.013.
|
[7] |
罗荣梅, 黄德武, 杨明川, 等. 杆式穿甲弹侵彻靶板时弹坑表面熔化快凝层研究 [J]. 兵工学报, 2015, 36(7): 1167–1175. DOI: 10.3969/j.issn.1000-1093.2015.07.003.
LUO R M, HUANG D W, YANG M C, et al. Research on melted and rapidly solidified layer on the surface of crater penetrated by long tungsten rod [J]. Acta Armamentarii, 2015, 36(7): 1167–1175. DOI: 10.3969/j.issn.1000-1093.2015.07.003.
|
[8] |
邹敏明, 郭珉, 柴东升, 等. 钨丝增强锆基非晶材料弹芯侵彻弹坑特征研究 [J]. 兵器材料科学与工程, 2021, 44(4): 56–60. DOI: 10.14024/j.cnki.1004-244x.20210514.009.
ZOU M M, GUO M, CHAI D S, et al. Morphological characteristics of penetration crater of tungsten wire reinforced zirconium based amorphous matrix composite [J]. Ordnance Material Science and Engineering, 2021, 44(4): 56–60. DOI: 10.14024/j.cnki.1004-244x.20210514.009.
|
[9] |
侯杰, 陈曦, 杜忠华, 等. W-Cu-Zr基非晶粉末药型罩射孔弹侵彻行为研究 [J]. 兵器材料科学与工程, 2022, 45(4): 12–17. DOI: 10.14024/j.cnki.1004-244x.20220701.004.
HOU J, CHEN X, DU Z H, et al. Penetration behavior of W-Cu-Zr amorphous powder liner [J]. Ordnance Material Science and Engineering, 2022, 45(4): 12–17. DOI: 10.14024/j.cnki.1004-244x.20220701.004.
|
[10] |
晁振龙, 姜龙涛, 陈圣朋, 等. 55%B4C/7075Al复合材料抗弹性能与损伤行为研究 [J]. 兵器材料科学与工程, 2020, 43(3): 1–7. DOI: 10.14024/j.cnki.1004-244x.20200115.005.
CHAO Z L, JIANG L T, Chen S P , et al. Ballistic property and damage behavior of 55% B4C/7075Al composites [J]. Ordnance Material Science and Engineering, 2020, 43(3): 1–7. DOI: 10.14024/j.cnki.1004-244x.20200115.005.
|
[11] |
黄竣皓, 王琳, 刘小品, 等. Ti-6321钛合金力学性能和抗弹性能 [J]. 兵工学报, 2021, 42(1): 124–132. DOI: 10.3969/j.issn.1000-1093.2021.01.014.
HUANG J H, WANG L, LIU X P, et al. Mechanical properties and ballistic performance of Ti-6321 alloy [J]. Acta Armamentarii, 2021, 42(1): 124–132. DOI: 10.3969/j.issn.1000-1093.2021.01.014.
|
[12] |
李明兵, 王新南, 商国强, 等. 双态组织TC32钛合金的抗弹性能及损伤机制 [J]. 中国有色金属学报, 2021, 31(2): 365–372. DOI: 10.11817/j.ysxb.1004.0609.2021-37761.
LI M B, WANG X N, SHANG G Q, et al. Ballistic properties and failure mechanisms of TC32 titanium alloy with bimodal microstructure [J]. The Chinese Journal of Nonferrous Metals, 2021, 31(2): 365–372. DOI: 10.11817/j.ysxb.1004.0609.2021-37761.
|
[13] |
苏冠龙, 龚煦, 李玉龙, 等. TC4在动态载荷下的剪切行为研究 [J]. 爆炸与冲击, 2015, 35(4): 527–535. DOI: 10.11883/1001-1455(2015)04-0527-09.
SU G L, GONG X, LI Y L, et al. Shear behavior of TC4 alloy under dynamic loading [J]. Explosion and Shock Waves, 2015, 35(4): 527–535. DOI: 10.11883/1001-1455(2015)04-0527-09.
|
[14] |
张博. 高速撞击条件下镁合金损伤行为及变形机制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020: 1–25. DOI: 10.27061/d.cnki.ghgdu.2020.001729.
|
[15] |
陈海华, 张先锋, 刘闯, 等. 高熵合金冲击变形行为研究进展 [J]. 爆炸与冲击, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.
CHEN H H, ZHANG X F, LIU C, et al. Research progress on impact deformation behavior of high-entropy alloys [J]. Explosion and Shock Waves, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.
|
[16] |
高玉魁, 陶雪菲. 高速冲击表面处理对金属材料力学性能和组织结构的影响 [J]. 爆炸与冲击, 2021, 41(4): 041401. DOI: 10.11883/bzycj-2020-0342.
GAO Y K, TAO X F. A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials [J]. Explosion and Shock Waves, 2021, 41(4): 041401. DOI: 10.11883/bzycj-2020-0342.
|
[17] |
夏龙祥. 钨纤维增强块体金属非晶复合材料侵彻行为研究 [D]. 南京: 南京理工大学, 2014: 11–22. DOI: 10.7666/d.Y2520745.
|
[18] |
ZHOU F, DU C X, DU Z, et al. Penetration gain study of a tungsten-fiber/zr-based metallic glass matrix Composite [J]. Crystals, 2022, 12(2): 284. DOI: 10.3390/cryst12020284.
|
[19] |
WALKER J. Hypervelocity penetration modeling: momentum vs. energy and energy transfer mechanisms [J]. International Journal of Impact Engineering, 2001, 26(1-10): 809–822. DOI: 10.1016/S0734-743X(01)00134-8.
|
[20] |
ELSHENAWY T, ELBEIH A, LI Q. Influence of target strength on the penetration depth of shaped charge jets into RHA targets [J]. International Journal of Mechanical Sciences, 2018, 136: 234–242. DOI: 10.1016/j.ijmecsci.2017.12.041.
|
[21] |
HALL E O. The deformation and ageing of mild steel: III discussion of results [C]// Proceedings of the Physical Society. Section B. London, UK: Institute of Physics and the Physical Society, 1951: 747. DOI: 10.1088/0370-1301/64/9/303.
|
[22] |
陈昊, 陶钢. 铜射流侵彻后45#钢穿孔处的微观组织分层研究 [J]. 南京理工大学学报, 2011, 35(4): 498–501. DOI: 10.14177/j.cnki.32-1397n.2011.04.001.
CHEN H, TAO G. Microstructure’s delamination on bore of 45# steel penetrated by copper jet [J]. Journal of Nanjing University of Science and Technology, 2011, 35(4): 498–501. DOI: 10.14177/j.cnki.32-1397n.2011.04.001.
|
[23] |
胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23(2): 188–192.
HU C M, HE H L, HU S S. Study on dynamic mechanical properties of No. 45 steel [J]. Explosion And Shock Waves, 2003, 23(2): 188–192.
|
[24] |
尚春明, 施冬梅, 张云峰等. Zr基非晶合金的燃烧释能特性[J]. 含能材料, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.
SHANG C M, SHI D M, ZHANG Y F, at al. Combustion and energy release characteristics of zr-based amorphous alloys [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.
|
[25] |
LI D F, DONG H Y, WU K M, at al. Effects of cooling after rolling and heat treatment on microstructures and mechanical properties of Mo-Ti microalloyed medium carbon steel [J]. Materials Science & Engineering A, 2020, 773(C): 138808. DOI: 10.1016/j.msea.2019.138808.
|
[1] | LIU Muhao, ZHANG Xianfeng, TAN Mengting, BAO Kuo, HAN Guoqing, LI Yi, SUN Weijing. A constitutive model for ceramic materials including microstructural features and damage factor[J]. Explosion And Shock Waves, 2024, 44(1): 013102. doi: 10.11883/bzycj-2023-0237 |
[2] | GUO Ruiqi, LI Jiangnan, MA Linjian, OU Can, XU Xin. Microstructure and dynamic splitting tensile properties of CF/SSF reinforced coral sand cement mortar[J]. Explosion And Shock Waves, 2024, 44(11): 113101. doi: 10.11883/bzycj-2-23-0466 |
[3] | REN Siyuan, WU Qiang, ZHANG Pinliang, SONG Guangming, CHEN Chuan, GONG Zizheng, LI Zhengyu. A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure[J]. Explosion And Shock Waves, 2024, 44(7): 073302. doi: 10.11883/bzycj-2023-0272 |
[4] | ZHANG Fengguo, LIU Jun, WANG Yanjin, WANG Pei, ZHENG Hui. Simulation method of spall damage for self-radiation damage aging materials with helium bubbles[J]. Explosion And Shock Waves, 2023, 43(10): 103105. doi: 10.11883/bzycj-2022-0486 |
[5] | ZOU Guangping, LIANG Zheng, WU Songyang, CHANG Zhongliang. Numerical analysis of dynamic response of ceramic particle reinforced polyurethane composites under explosive loading[J]. Explosion And Shock Waves, 2023, 43(7): 073104. doi: 10.11883/bzycj-2022-0254 |
[6] | LI Manjiang, ZHAO Zhihao, DONG Xinlong, FU Yingqian, YU Xinlu, ZHOU Gangyi. Deformation and phase transformation of 20 steel cylinders driven by inner explosion[J]. Explosion And Shock Waves, 2023, 43(1): 013105. doi: 10.11883/bzycj-2022-0074 |
[7] | WANG Cunhong, CAO Yuwu, CHEN Jin, KONG Lin, SUN Xingyun. Research progress in mechanical behaviors of metallic energetic materials[J]. Explosion And Shock Waves, 2023, 43(7): 071101. doi: 10.11883/bzycj-2022-0251 |
[8] | ZHANG Xinyue, HUI Xulong, GE Yujing, SHU Wan, BAI Chunyu, LIU Xiaochuan. Energy absorption characteristics and failure analysis of composite thin-walled structures with different cross-sectional configurations under medium- and low-speed compression loading[J]. Explosion And Shock Waves, 2022, 42(6): 063102. doi: 10.11883/bzycj-2021-0347 |
[9] | YIN Zhiyong, CHEN Xiaowei. Analysis of characteristic control parameters of long-rod penetration[J]. Explosion And Shock Waves, 2021, 41(2): 023302. doi: 10.11883/bzycj-2020-0057 |
[10] | ZHANG Yuling, SHI Dongmei, ZHANG Yunfeng, LIU Guoqing, ZHEN Jianwei. Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments[J]. Explosion And Shock Waves, 2021, 41(5): 053301. doi: 10.11883/bzycj-2020-0063 |
[11] | CHEN Weihua, WANG Liyan, ZHANG Hanyi, LI Guanshu, CHI Pengtao, MA Jing. In-situ measurements of fracture toughness and microstructure characterization of C/SiC composites at elevated temperatures in air[J]. Explosion And Shock Waves, 2021, 41(4): 043103. doi: 10.11883/bzycj-2020-0104 |
[12] | LI Mingrui, FENG Na, CAI Qingshan, CHEN Chunlin, MA Kun, YIN Lixin, ZHOU Gang. Damage of a multi-layer Q345 target under hypervelocity impact of a rod-shaped 93W projectile[J]. Explosion And Shock Waves, 2021, 41(2): 021408. doi: 10.11883/bzycj-2020-0303 |
[13] | Wang Jiagang, Yu Yonggang, Zhou Liangliang, Cao Hanxue, Liu Xi. Fracture analysis of glass fiber reinforced composite material under high temperature and pressure[J]. Explosion And Shock Waves, 2017, 37(6): 1107-1112. doi: 10.11883/1001-1455(2017)06-1107-06 |
[14] | Zhao Kang, Zhao Hong-yu, Jia Qun-yan. An analysis of rockburst fracture micromorphology and study of its mechanism[J]. Explosion And Shock Waves, 2015, 35(6): 913-918. doi: 10.11883/1001-1455(2015)06-0913-06 |
[15] | Su Guan-long, Gong Xu, Li Yu-long, Guo Ya-zhou, Suo Tao. Shear behavior of TC4 alloy under dynamic loading[J]. Explosion And Shock Waves, 2015, 35(4): 527-535. doi: 10.11883/1001-1455(2015)04-0527-09 |
[16] | Cui Kai-bo, Qin Jun-qi, Di Chang-chun, Yin Jun-hui, Sun Ye-zun. Experimental research on microscopic failure mechanism of the throttling ring in a gun recoil brake[J]. Explosion And Shock Waves, 2014, 34(6): 736-741. doi: 10.11883/1001-1455(2014)06-0736-06 |
[17] | Lai Hua-wei, Wang Zhan-jiang, Yang Li-ming, Wang Li-li. Characteristics analyses of linear viscoelastic spherical waves[J]. Explosion And Shock Waves, 2013, 33(1): 1-10. doi: 10.11883/1001-1455(2013)01-0001-10 |
[18] | LI Jun-ling, FU Hua, TAN duo-wang, LU Fang-yun. FracturedamageanalysisofPBX[J]. Explosion And Shock Waves, 2011, 31(6): 624-629. doi: 10.11883/1001-1455(2011)06-0624-06 |
1. | 章浪,赵丰鹏,张钰忠,邓勇军,李继承. 钨纤维增强金属玻璃复合材料的长杆弹斜侵彻/穿甲性能. 爆炸与冲击. 2025(03): 107-121 . ![]() | |
2. | 任杰,章浪,李继承,邓勇军,陈小伟,杜成鑫. Wf/Zr基复合材料长杆弹在不同速度下的头形转变规律. 包装工程. 2024(19): 134-143 . ![]() |