Citation: | YANG Yaozong, KONG Xiangzhen, FANG Qin, HONG Zhijie, GAO Chu. Numerical investigation on attenuation of stress waves in concrete induced by cylindrical cased charge explosion[J]. Explosion And Shock Waves, 2024, 44(11): 112202. doi: 10.11883/bzycj-2023-0342 |
[1] |
张世豪, 韩晶, 张欣欣, 等. 带壳装药壳体厚度对混凝土爆破毁伤效果的影响 [J]. 爆破, 2013, 30(1): 25–29,34. DOI: 10.3963/j.issn.1001-487X.2013.01.006.
ZHANG S H, HAN J, ZHANG X X, et al. Effect of shell thickness of shell charge on explosion and damage effect in concrete [J]. Blasting, 2013, 30(1): 25–29,34. DOI: 10.3963/j.issn.1001-487X.2013.01.006.
|
[2] |
LOCKING P M, FLYNN D, DUNNETT J. Warhead filling and casing interactions affect the blast field performance [C]//Proceedings of the 24th International Symposium on Ballistics. New Orleans, LA, USA, 2008.
|
[3] |
梁斌, 陈忠富, 卢永刚, 等. 不同材料壳体装药对爆破威力影响分析 [J]. 解放军理工大学学报(自然科学版), 2007, 8(5): 429–433. DOI: 10.3969/j.issn.1009-3443.2007.05.005.
LIANG B, CHEN Z F, LU Y G, et al. Investigation of blast effect of explosive charge with different shell material [J]. Journal of PLA University of Science and Technology, 2007, 8(5): 429–433. DOI: 10.3969/j.issn.1009-3443.2007.05.005.
|
[4] |
GRISARO H Y, BENAMOU D, DANCYGIER A N. Investigation of blast and fragmentation loading characteristics–Field tests [J]. Engineering Structures, 2018, 167: 363–375. DOI: 10.1016/j.engstruct.2018.04.013.
|
[5] |
LI Y, CHEN Z Y, REN X B, et al. Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading [J]. International Journal of Impact Engineering, 2020, 142: 103579. DOI: 10.1016/j.ijimpeng.2020.103579.
|
[6] |
刘彦, 段卓平, 王新生, 等. 不同厚度壳体装药在混凝土中爆炸的实验研究 [J]. 北京理工大学学报, 2010, 30(7): 771–773,848. DOI: 10.15918/j.tbit1001-0645.2010.07.008.
LIU Y, DUAN Z P, WANG X S, et al. Experiments on explosion of explosives with different thickness shells in concretes [J]. Transactions of Beijing Institute of Technology, 2010, 30(7): 771–773,848. DOI: 10.15918/j.tbit1001-0645.2010.07.008.
|
[7] |
王新生, 黄风雷, 刘彦, 等. 大长径比带壳装药爆炸毁伤混凝土试验 [J]. 兵工学报, 2009, 30(S2): 251–254.
WANG X S, HUANG F L, LIU Y, et al. Experiment on large length-diameter ratio shell charge explosion and damage in concretes [J]. Acta Armamentarii, 2009, 30(S2): 251–254.
|
[8] |
张奇, 覃彬, 孙庆云, 等. 战斗部壳体厚度对爆炸空气冲击波的影响 [J]. 弹道学报, 2008, 20(2): 17–19,23.
ZHANG Q, QIN B, SUN Q Y, et al. Influence of thickness of warhead shell upon explosive shock wave [J]. Journal of Ballistics, 2008, 20(2): 17–19,23.
|
[9] |
李茂, 朱锡, 侯海量, 等. 冲击波和高速破片联合作用下固支方板毁伤效应数值模拟 [J]. 国防科技大学学报, 2017, 39(6): 64–70. DOI: 10.11887/j.cn.201706011.
LI M, ZHU X, HOU H L, et al. Numerical simulation of the damage effects of clamped square plate subjected to the impact of blast wave and fragments [J]. Journal of National University of Defense Technology, 2017, 39(6): 64–70. DOI: 10.11887/j.cn.201706011.
|
[10] |
NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. DOI: 10.1016/j.ijimpeng.2009.02.008.
|
[11] |
苏波, 唐勇, 顾文彬, 等. 带壳装药在多层介质中爆炸的数值模拟研究 [J]. 爆破, 2009, 26(1): 15–18,36. DOI: 10.3963/j.issn.1001-487X.2009.01.004.
SU B, TANG Y, GU W B, et al. Numerical simulation of blast effects for charge with case in multi-layer medium [J]. Blasting, 2009, 26(1): 15–18,36. DOI: 10.3963/j.issn.1001-487X.2009.01.004.
|
[12] |
孙善政, 卢浩, 李杰, 等. 侵爆作用下混凝土靶破坏效应试验与数值模拟 [J]. 振动与冲击, 2022, 41(1): 206–212. DOI: 10.13465/j.cnki.jvs.2022.01.026.
SUN S Z, LU H, LI J, et al. Tests and numerical simulation for damage effect of concrete target under penetration and explosion [J]. Journal of Vibration and Shock, 2022, 41(1): 206–212. DOI: 10.13465/j.cnki.jvs.2022.01.026.
|
[13] |
梁斌, 陈忠富, 陈小伟. 爆炸载荷对混凝土毁伤效应分析 [J]. 弹箭与制导学报, 2006, 26(3): 104–107. DOI: 10.3969/j.issn.1673-9728.2006.03.034.
LAING B, CHEN Z F, CHEN X W. Damage analysis of concrete subject to explosive loading [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(3): 104–107. DOI: 10.3969/j.issn.1673-9728.2006.03.034.
|
[14] |
傅学金, 强洪夫, 杨月诚. 固体介质中SPH方法的拉伸不稳定性问题研究进展 [J]. 力学进展, 2007, 37(3): 375–388. DOI: 10.3321/j.issn:1000-0992.2007.03.005.
FU X J, QIANG H F, YANG Y C, et al. Advances in the tensile instability of smoothed particle hydrodynamics applied to solid dynamics [J]. Advances in Mechanics, 2007, 37(3): 375–388. DOI: 10.3321/j.issn:1000-0992.2007.03.005.
|
[15] |
WU C T, WU Y C, CRAWFORD J E, et al. Three-dimensional concrete impact and penetration simulations using the smoothed particle Galerkin method [J]. International Journal of Impact Engineering, 2017, 106: 1–17. DOI: 10.1016/j.ijimpeng.2017.03.005.
|
[16] |
王新征, 张松林, 邹广平. 内部短药柱爆炸作用下钢筒破裂特征的数值分析 [J]. 高压物理学报, 2010, 24(1): 61–66. DOI: 10.11858/gywlxb.2010.01.011.
WANG X Z, ZHANG S L, ZOU G P. Numerical analysis on fragmentation properties of the steel cylinder subjected to detonation of internal short cylinderical explosive charge [J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 61–66. DOI: 10.11858/gywlxb.2010.01.011.
|
[17] |
KONG X S, WU W G, LI J, et al. A numerical investigation on explosive fragmentation of metal casing using Smoothed Particle Hydrodynamic method [J]. Materials & Design, 2013, 51: 729–741. DOI: 10.1016/j.matdes.2013.04.041.
|
[18] |
李营, 吴卫国, 朱海清, 等. 爆炸冲击波与破片对RC桥的耦合毁伤研究 [J]. 爆破, 2016, 33(2): 142–148. DOI: 10.3963/j.issn.1001-487X.2016.02.028.
LI Y, WU W G, ZHU H Q, et al. Damage characteristics of RC bridge under combined effects of blast shock wave and fragments loading [J]. Blasting, 2016, 33(2): 142–148. DOI: 10.3963/j.issn.1001-487X.2016.02.028.
|
[19] |
廖南, 洪建, 方秦, 等. 带壳装药爆炸冲击波与破片荷载规律的数值模拟研究 [J]. 防护工程, 2022, 44(6): 7–14. DOI: 10.3969/j.issn.1674-1854.2022.06.002.
LIAO N, HONG J, FANG Q, et al. Numerical simulation of the loading law of shock wave and fragment under cased charge blast [J]. Protective Engineering, 2022, 44(6): 7–14. DOI: 10.3969/j.issn.1674-1854.2022.06.002.
|
[20] |
GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/j.ijimpeng.2023.104491.
|
[21] |
KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
|
[22] |
WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
|
[23] |
ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
|
[24] |
MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. DOI: 10.1007/s11831-021-09553-2.
|
[25] |
高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J]. Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
|
[26] |
YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860.
|
[27] |
WILLIAMS E M, GRAHAM S S, AKERS S A, et al. Mechanical properties of a baseline UHPC with and without steel fibers [J]. WIT Transactions on Engineering Sciences, 2009, 64(12): 93–104. DOI: 10.2495/MC090091.
|
[28] |
REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1–14. DOI: 10.1016/j.conbuildmat.2016.02.227.
|
[29] |
TARVER C M, MCGUIRE E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials: UCRL-JC-145013 [R]. Livermore: Lawrence Livermore National Lab. , 2002.
|
[30] |
王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
|
[31] |
XIAO W F, ANDRAE M, GEBBEKEN N. Effect of charge shape and initiation configuration of explosive cylinders detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 04020146. DOI: 10.1061/(ASCE)ST.1943-541X.0002694.
|
[32] |
RIGBY S E, OSBORNE C, LANGDON G S, et al. Spherical equivalence of cylindrical explosives: effect of charge shape on deflection of blast-loaded plates [J]. International Journal of Impact Engineering, 2021, 155: 103892. DOI: 10.1016/j.ijimpeng.2021.103892.
|
[33] |
方秦, 柳锦春. 地下防护结构 [M]. 北京: 中国水利水电出版社, 2010: 45–47.
|
[34] |
李玉节, 张效慈, 汪俊, 等. 带壳有隙TNT炸药包的水下爆炸 [J]. 船舶力学, 2005, 9(3): 118–125. DOI: 10.3969/j.issn.1007-7294.2005.03.012.
LI Y J, ZHANG X C, WANG J, et al. Underwater explosion of TNT dynamite with a metal shell and annular gap [J]. Journal of Ship Mechanics, 2005, 9(3): 118–125. DOI: 10.3969/j.issn.1007-7294.2005.03.012.
|