Citation: | DU Xiaoqing, HE Yiping, QIU Tao, CHENG Shuai, ZHANG Dezhi. Prediction of blast loads on bridge girders based on PCA-BPNN[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0343 |
[1] |
CLUBLEY S K. Non-linear long duration blast loading of cylindrical shell structures [J]. Engineering Structures, 2014, 59: 113–126. DOI: 10.1016/j.engstruct.2013.10.030.
|
[2] |
DENNY J W, CLUBLEY S K. Long-duration blast loading & response of steel column sections at different angles of incidence [J]. Engineering Structures, 2019, 178: 331–342. DOI: 10.1016/j.engstruct.2018.10.019.
|
[3] |
JIANG Y X, ZHANG B Y, WANG L, et al. Dynamic response of polyurea coated thin steel storage tank to long duration blast loadings [J]. Thin-Walled Structures, 2021, 163: 107747. DOI: 10.1016/j.tws.2021.107747.
|
[4] |
SAKURAI A. Blast wave theory [M]. Mathematics Research Center, United States Army, University of Wisconsin, 1964.
|
[5] |
RIGBY S E, AKINTARO O I, FULLER B J, et al. Predicting the response of plates subjected to near-field explosions using an energy equivalent impulse [J]. International Journal of Impact Engineering, 2019, 128(1): 24–36. DOI: 10.1016/j.ijimpeng.2019.01.014.
|
[6] |
KINGERY C N, BULMASH G. Airblast parameters from TNT spherical air burst and hemispherical surface burst [R]. US Army Armament and Development Center, Ballistic Research Laboratory, 1984.
|
[7] |
RIGBY S E, TYAS A, FAY S D, et al. Validation of semiempirical blast pressure predictions for far field explosions: is there inherent variability in blast wave parameters? [C]//Proceedings of the 6th International Conference on Protection of Structures Against Hazards. Sheffield, 2014.
|
[8] |
LARCHER M, CASADEI F. Explosions in complex geometries: a comparison of several approaches [J]. International Journal of Protective Structures, 2010, 1(2): 169–195. DOI: 10.1260/2041-4196.1.2.169.
|
[9] |
DENNIS A A, PANNELL J J, SMYL D J, et al. Prediction of blast loading in an internal environment using artificial neural networks [J]. International Journal of Protective Structures, 2021, 12(3): 287–314. DOI: 10.1177/2041419620970570.
|
[10] |
HANSEN O R, HINZE P, ENGEL D, et al. Using computational fluid dynamics (CFD) for blast wave predictions [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 885–906. DOI: 10.1016/j.jlp.2010.07.005.
|
[11] |
REMENNIKOV A M, ROSE T A. Modelling blast loads on buildings in complex city geometries [J]. Computers & Structures, 2005, 83(27): 2197–2205. DOI: 10.1016/j.compstruc.2005.04.003.
|
[12] |
SOHAIMI A S M, RISBY M S. Using computational fluid dynamics (CFD) for blast wave propagation under structure [J]. Procedia Computer Science, 2016, 80: 1202–1211. DOI: 10.1016/j.procs.2016.05.463.
|
[13] |
HASTIE T, TIBSHIRANI R, FRIEDMAN J H, et al. The elements of statistical learning: data mining, inference, and prediction [M]. New York: Springer, 2009.
|
[14] |
FLOOD I, BEWICK B T, DINAN R J, et al. Modeling blast wave propagation using artificial neural network methods [J]. Advanced Engineering Informatics, 2009, 23(4): 418–423. DOI: 10.1016/j.aei.2009.06.005.
|
[15] |
REMENNIKOV A M, ROSE T A. Predicting the effectiveness of blast wall barriers using neural networks [J]. International Journal of Impact Engineering, 2007, 34(12): 1907–1923. DOI: 10.1016/j.ijimpeng.2006.11.003.
|
[16] |
BEWICK B, FLOOD I, CHEN Z. A neural-network model-based engineering tool for blast wall protection of structures [J]. International Journal of Protective Structures, 2011, 2(2): 159–176. DOI: 10.1260/2041-4196.2.2.159.
|
[17] |
ALSHAMMARI O G, ISAAC O S, CLARKE S D, et al. Mitigation of blast loading through blast-obstacle interaction [J]. International Journal of Protective Structures, 2023, 14(3): 357–389. DOI: 10.1177/20414196221115869.
|
[18] |
PANNELL J J, RIGBY S E, PANOUTSOS G. Physics-informed regularisation procedure in neural networks: an application in blast protection engineering [J]. International Journal of Protective Structures, 2022, 13(3): 555–578. DOI: 10.1177/20414196211073501.
|
[19] |
PANNELL J J, RIGBY S E, PANOUTSOS G. Application of transfer learning for the prediction of blast impulse [J]. International Journal of Protective Structures, 2023, 14(2): 242–262. DOI: 10.177/20414196221096699.
|
[20] |
LI Q L, WANG Y, SHAO Y D, et al. A comparative study on the most effective machine learning model for blast loading prediction: from GBDT to transformer [J]. Engineering Structures, 2023, 276: 115310. DOI: 10.1016/j.engstruct.2022.115310.
|
[21] |
LI Q L, WANG Y, LI L, et al. Prediction of BLEVE loads on structures using machine learning and CFD [J]. Process Safety and Environmental Protection, 2023, 171: 914–925. DOI: 10.1016/j.psep.2023.02.008.
|
[22] |
HUANG Y, ZHU S J, CHEN S W. Deep learning-driven super-resolution reconstruction of two-dimensional explosion pressure fields [J]. Journal of Building Engineering, 2023, 78: 107620. DOI: 10.1016/j.jobe.2023.107620.
|
[23] |
孙传猛, 裴东兴, 陈嘉欣, 等. 基于深度学习的爆炸冲击波信号重构模型 [J]. 计测技术, 2022, 42(2): 57–67. DOI: 10.11823/j.issn.1674-5795.2022.02.07.
SUN C M, PEI D X, CHEN J X, et al. Model for reconstruction of explosion shock wave signals based on deep learning [J]. Measurement Technology, 2022, 42(2): 57–67. DOI: 10.11823/j.issn.1674-5795.2022.02.07.
|
[24] |
QIU T, CHENG S, DU X Q, et al. Spacing effects on blast loading characteristics of two tandem square columns under planar shock waves [J]. Physics of Fluids, 2023, 35(12): 127116. DOI: 10.1063/5.0177869.
|
[25] |
KARLOS V, LARCHER M, SOLOMOS G. Analysis of the blast wave decay coefficient in the Friedlander equation using the Kingery-Bulmash data [R]. Joint Research Center, European Commission, 2015.
|
[26] |
ZHOU Z H. Machine learning [M]. Springer Nature, 2021. DOI: 10.1007/978-981-15-1967-3.
|
[27] |
MISRA D. Mish: a self-regularized non-monotonic activation function[R]. British Machine Vision Conference, 2019. DOI: 10.48550/arXiv.1908.08681.
|