• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
DU Xiaoqing, HE Yiping, QIU Tao, CHENG Shuai, ZHANG Dezhi. Prediction of blast loads on bridge girders based on PCA-BPNN[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0343
Citation: DU Xiaoqing, HE Yiping, QIU Tao, CHENG Shuai, ZHANG Dezhi. Prediction of blast loads on bridge girders based on PCA-BPNN[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0343

Prediction of blast loads on bridge girders based on PCA-BPNN

doi: 10.11883/bzycj-2023-0343
  • Received Date: 2023-09-26
  • Rev Recd Date: 2024-04-19
  • Available Online: 2024-04-19
  • Facing the challenges of accurate and effective prediction under extreme loads, machine learning has gradually demonstrated its potential to replace traditional methods. Existing approaches primarily focus on predicting the peak overpressure or impulse of explosive shock waves, with limited research on predicting the reflected overpressure time history. Load-time history prediction encompasses not only the peak overpressure but also embraces various multi-dimensional information including duration, waveform, and impulse, thereby offering a more comprehensive depiction of the dynamic temporal and spatial characteristics of shock waves. To address this issue, a prediction model for bridge surface reflected overpressure time history is proposed, targeting a planar shock wave diffracting around a bridge section. This model is based on principal component analysis (PCA) and back propagation neural network (BPNN) algorithm with multi-task learning. A loss function considering the impact of peak overpressure and maximum impulse is introduced to fully consider the potential correlations between different modes after PCA dimension reduction. This enables the model to effectively predict bridge shock wave load time histories under varying incident overpressure. Through the analysis of three types of BPNN models, multi-task learning model, multi-input single-output model, and multi-input multi-output model. It was found that the multitask learning model has the highest prediction accuracy, while the multi-input multi-output model struggles to effectively adapt to the current predictive task requirements. The multitask learning model, used for predicting, achieves high precision in forecasting the time history of reflected overpressure at various measurement points on the bridge surface and the peak overpressure values, with R2 values of 0.792 and 0.987. It also closely matches the simulation values in predicting the time history of combined forces and torque acting on the box girder. Additionally, this model performs better in interpolative value prediction than in extrapolative value prediction, but it also demonstrates a certain capability in predicting extrapolative values.
  • loading
  • [1]
    CLUBLEY S K. Non-linear long duration blast loading of cylindrical shell structures [J]. Engineering Structures, 2014, 59: 113–126. DOI: 10.1016/j.engstruct.2013.10.030.
    [2]
    DENNY J W, CLUBLEY S K. Long-duration blast loading & response of steel column sections at different angles of incidence [J]. Engineering Structures, 2019, 178: 331–342. DOI: 10.1016/j.engstruct.2018.10.019.
    [3]
    JIANG Y X, ZHANG B Y, WANG L, et al. Dynamic response of polyurea coated thin steel storage tank to long duration blast loadings [J]. Thin-Walled Structures, 2021, 163: 107747. DOI: 10.1016/j.tws.2021.107747.
    [4]
    SAKURAI A. Blast wave theory [M]. Mathematics Research Center, United States Army, University of Wisconsin, 1964.
    [5]
    RIGBY S E, AKINTARO O I, FULLER B J, et al. Predicting the response of plates subjected to near-field explosions using an energy equivalent impulse [J]. International Journal of Impact Engineering, 2019, 128(1): 24–36. DOI: 10.1016/j.ijimpeng.2019.01.014.
    [6]
    KINGERY C N, BULMASH G. Airblast parameters from TNT spherical air burst and hemispherical surface burst [R]. US Army Armament and Development Center, Ballistic Research Laboratory, 1984.
    [7]
    RIGBY S E, TYAS A, FAY S D, et al. Validation of semiempirical blast pressure predictions for far field explosions: is there inherent variability in blast wave parameters? [C]//Proceedings of the 6th International Conference on Protection of Structures Against Hazards. Sheffield, 2014.
    [8]
    LARCHER M, CASADEI F. Explosions in complex geometries: a comparison of several approaches [J]. International Journal of Protective Structures, 2010, 1(2): 169–195. DOI: 10.1260/2041-4196.1.2.169.
    [9]
    DENNIS A A, PANNELL J J, SMYL D J, et al. Prediction of blast loading in an internal environment using artificial neural networks [J]. International Journal of Protective Structures, 2021, 12(3): 287–314. DOI: 10.1177/2041419620970570.
    [10]
    HANSEN O R, HINZE P, ENGEL D, et al. Using computational fluid dynamics (CFD) for blast wave predictions [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 885–906. DOI: 10.1016/j.jlp.2010.07.005.
    [11]
    REMENNIKOV A M, ROSE T A. Modelling blast loads on buildings in complex city geometries [J]. Computers & Structures, 2005, 83(27): 2197–2205. DOI: 10.1016/j.compstruc.2005.04.003.
    [12]
    SOHAIMI A S M, RISBY M S. Using computational fluid dynamics (CFD) for blast wave propagation under structure [J]. Procedia Computer Science, 2016, 80: 1202–1211. DOI: 10.1016/j.procs.2016.05.463.
    [13]
    HASTIE T, TIBSHIRANI R, FRIEDMAN J H, et al. The elements of statistical learning: data mining, inference, and prediction [M]. New York: Springer, 2009.
    [14]
    FLOOD I, BEWICK B T, DINAN R J, et al. Modeling blast wave propagation using artificial neural network methods [J]. Advanced Engineering Informatics, 2009, 23(4): 418–423. DOI: 10.1016/j.aei.2009.06.005.
    [15]
    REMENNIKOV A M, ROSE T A. Predicting the effectiveness of blast wall barriers using neural networks [J]. International Journal of Impact Engineering, 2007, 34(12): 1907–1923. DOI: 10.1016/j.ijimpeng.2006.11.003.
    [16]
    BEWICK B, FLOOD I, CHEN Z. A neural-network model-based engineering tool for blast wall protection of structures [J]. International Journal of Protective Structures, 2011, 2(2): 159–176. DOI: 10.1260/2041-4196.2.2.159.
    [17]
    ALSHAMMARI O G, ISAAC O S, CLARKE S D, et al. Mitigation of blast loading through blast-obstacle interaction [J]. International Journal of Protective Structures, 2023, 14(3): 357–389. DOI: 10.1177/20414196221115869.
    [18]
    PANNELL J J, RIGBY S E, PANOUTSOS G. Physics-informed regularisation procedure in neural networks: an application in blast protection engineering [J]. International Journal of Protective Structures, 2022, 13(3): 555–578. DOI: 10.1177/20414196211073501.
    [19]
    PANNELL J J, RIGBY S E, PANOUTSOS G. Application of transfer learning for the prediction of blast impulse [J]. International Journal of Protective Structures, 2023, 14(2): 242–262. DOI: 10.177/20414196221096699.
    [20]
    LI Q L, WANG Y, SHAO Y D, et al. A comparative study on the most effective machine learning model for blast loading prediction: from GBDT to transformer [J]. Engineering Structures, 2023, 276: 115310. DOI: 10.1016/j.engstruct.2022.115310.
    [21]
    LI Q L, WANG Y, LI L, et al. Prediction of BLEVE loads on structures using machine learning and CFD [J]. Process Safety and Environmental Protection, 2023, 171: 914–925. DOI: 10.1016/j.psep.2023.02.008.
    [22]
    HUANG Y, ZHU S J, CHEN S W. Deep learning-driven super-resolution reconstruction of two-dimensional explosion pressure fields [J]. Journal of Building Engineering, 2023, 78: 107620. DOI: 10.1016/j.jobe.2023.107620.
    [23]
    孙传猛, 裴东兴, 陈嘉欣, 等. 基于深度学习的爆炸冲击波信号重构模型 [J]. 计测技术, 2022, 42(2): 57–67. DOI: 10.11823/j.issn.1674-5795.2022.02.07.

    SUN C M, PEI D X, CHEN J X, et al. Model for reconstruction of explosion shock wave signals based on deep learning [J]. Measurement Technology, 2022, 42(2): 57–67. DOI: 10.11823/j.issn.1674-5795.2022.02.07.
    [24]
    QIU T, CHENG S, DU X Q, et al. Spacing effects on blast loading characteristics of two tandem square columns under planar shock waves [J]. Physics of Fluids, 2023, 35(12): 127116. DOI: 10.1063/5.0177869.
    [25]
    KARLOS V, LARCHER M, SOLOMOS G. Analysis of the blast wave decay coefficient in the Friedlander equation using the Kingery-Bulmash data [R]. Joint Research Center, European Commission, 2015.
    [26]
    ZHOU Z H. Machine learning [M]. Springer Nature, 2021. DOI: 10.1007/978-981-15-1967-3.
    [27]
    MISRA D. Mish: a self-regularized non-monotonic activation function[R]. British Machine Vision Conference, 2019. DOI: 10.48550/arXiv.1908.08681.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(4)

    Article Metrics

    Article views (231) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return