• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
WANG Zhikai, ZHENG Jingzhou, YANG Yang, XIA Huiheng, YAO Xiongliang. Research on damage and cavitation characteristics of propellers under far field shock waves[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0395
Citation: WANG Zhikai, ZHENG Jingzhou, YANG Yang, XIA Huiheng, YAO Xiongliang. Research on damage and cavitation characteristics of propellers under far field shock waves[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0395

Research on damage and cavitation characteristics of propellers under far field shock waves

doi: 10.11883/bzycj-2023-0395
  • Received Date: 2023-10-31
  • Rev Recd Date: 2024-03-29
  • Available Online: 2024-04-01
  • The propeller is a critical component of a ship’s propulsion system that significantly influences the vessel’s performance through its stability and efficiency. Current research on the propulsion shaft system’s anti-shock properties often oversimplifies the propeller as a uniform circular disk, which disregards its structural intricacies and leads to inaccuracies in the transient damage characteristics during underwater explosions. This research focused on the propeller’s structural details and developed both an equivalent shell model and a more intricate solid model. Through structural wet modal numerical simulations, the study had determined that solid modeling outperforms shell modeling in accuracy. This finding is corroborated by coMParisons with empirical formulas, thereby validating the fluid-structure coupling analysis model. Building upon this foundation, the research examines the propeller’s transient shock response and damage characteristics when subjected to far-field shockwaves. Utilizing the total wave algorithm in ABAQUS, the investigation extends to the cavitation and damage patterns of the propeller under such conditions, with confirmation provided by the one-dimensional Bleich-Sandler finite element model. To delve deeper into the phenomenon of hydrodynamic cavitation caused by the propeller’s high-speed rotation, the coupled Eulerian-Lagrangian (CEL) method was applied. Initially, a simplified propeller model was created to confirm the cavitation bubble layer’s fragmentation due to the flow field load resulting from explosive product expansion. Subsequent modifications to the propeller’s transient fluid-structure coupling calculation model allow for a more thorough analysis of its transient damage characteristics. The findings indicate that at attack angles of 0° and 90°, the propeller surface experiences heightened shockwave loads, albeit with a threshold linked to the propeller’s structural properties. When hydrodynamic cavitation is factored in, the stress distribution on the propeller blade tends to be more uniform; the blade’s primary plastic damage is localized at the root, exhibiting both localized and complete plastic deformation patterns. This research elucidates the damage and cavitation effects on propellers due to far-field explosions, offering valuable insights for enhancing the anti-shock defenses of both the propulsion shaft system and the propeller itself.
  • loading
  • [1]
    RAJENDRAN R. Reloading effects on plane plates subjected to non-contact underwater explosion [J]. Journal of Materials Processing Technology, 2008, 206(1/2/3): 275–281. DOI: 10.1016/j.jmatprotec.2007.12.022.
    [2]
    许斐, 周力, 宗智. 铝合金舰艇在水下冲击波作用下动态响应的数值研究 [J]. 舰船科学技术, 2011, 33(1): 31–40.

    XU F, ZHOU L, ZONG Z. A numerical analysis on dynamic responses of aluminum vessels subjected to underwater shock wave [J]. Ship Science and Technology, 2011, 33(1): 31–40. DOI: 10.3404/j.issn.1672-7649.2011.006.
    [3]
    宗智, 陈岗, 叶帆, 等. 水下爆炸冲击波作用下的空化效应数值仿真研究 [J]. 船舶力学, 2014, 18(4): 385–394. DOI: 10.3969/j.issn.1007-7294.2014.04.005.

    ZONG Z, CHEN G, YE F, et al. Numerical simulation of cavitation caused by underwater explosion [J]. Journal of Ship Mechanics, 2014, 18(4): 385–394. DOI: 10.3969/j.issn.1007-7294.2014.04.005.
    [4]
    PAN J Y, FARAG N, LIN T, et al. Propeller induced structural vibration through the thrust bearing [C]//Proceedings of Australia Acoustical Society Annual Conference. Adelaide, 2002.
    [5]
    KOBAYASHI S. Effects of shaft vibration on occurrence of asymmetric cavitation in inducer [J]. JSME International Journal Series B Fluids and Thermal Engineering, 2006, 49(4): 1220–1225. DOI: 10.1299/jsmeb.49.1220.
    [6]
    孙文林. 冰区航行船舶螺旋桨强度研究 [D]. 哈尔滨: 哈尔滨工程大学, 2016. DOI: 10.7666/d.D01105449.

    SUN W L. Research on the propeller strength of ice-going ships [D]. Harbin: Harbin Engineering University, 2016. DOI: 10.7666/d.D01105449.
    [7]
    徐学伟, 刘寅桐, 张耀林. 爆炸声源对舰船螺旋桨效能损伤评估研究 [J]. 舰船电子工程, 2018, 38(10): 153–155, 164. DOI: 10.3969/j.issn.1672-9730.2018.10.038.

    XU X W, LIU Y T, ZHANG Y L. Research on evaluation of damage to ship propeller effectiveness for explosion sound source [J]. Ship Electronic Engineering, 2018, 38(10): 153–155, 164. DOI: 10.3969/j.issn.1672-9730.2018.10.038.
    [8]
    UCAR H. Dynamic response of a catamaran-hull ship subjected to underwater explosions [D]. Monterey: Naval Postgraduate School, 2006.
    [9]
    孙帅, 常欣, 叶礼裕, 等. 四桨推进船舶螺旋桨负荷数值计算分析 [J]. 哈尔滨工程大学学报, 2017, 38(9): 1351–1358. DOI: 10.11990/jheu.201607004.

    SUN S, CHANG X, YE L Y, et al. Numerical analysis of the propeller load of a four-propeller propulsion ship [J]. Journal of Harbin Engineering University, 2017, 38(9): 1351–1358. DOI: 10.11990/jheu.201607004.
    [10]
    刘强, 王永生, 董蕾, 等. 船用螺旋桨振动特性数值计算与分析 [J]. 海军工程大学学报, 2016, 28(3): 17–23. DOI: 10.7495/j.issn.1009-3486.2016.03.005.

    LIU Q, WANG Y S, DONG L, et al. Numerical analysis on vibration of marine propeller [J]. Journal of Naval University of Engineering, 2016, 28(3): 17–23. DOI: 10.7495/j.issn.1009-3486.2016.03.005.
    [11]
    娄本强, 嵇春艳. 船用螺旋桨流固耦合振动特性分析 [J]. 大连理工大学学报, 2019, 59(2): 154–161. DOI: 10.7511/dllgxb201902007.

    LOU B Q, JI C Y. FSI vibrations characteristics analysis of marine propeller [J]. Journal of Dalian University of Technology, 2019, 59(2): 154–161. DOI: 10.7511/dllgxb201902007.
    [12]
    李程辉. 基于声固耦合法的水下爆炸冲击波在复杂边界附近空化特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2018: 26–30.

    LI C H. Investigation on cavitation of underwater explosion shockwave near complex boundaries with coupled CEL method [D]. Harbin: Harbin Engineering University, 2018: 26–30.
    [13]
    陈高杰, 贾则, 宗智, 等. 考虑空化效应的舰艇水下爆炸仿真研究 [J]. 爆破, 2012, 29(2): 1–3,25. DOI: 10.3963/j.issn.1001-487X.2012.29.0213.

    CHEN G J, JIA Z, ZONG Z, et al. Investigation on simulation of underwater explosion cavitation surface ship [J]. Blasting, 2012, 29(2): 1–3, 25. DOI: 10.3963/j.issn.1001-487X.2012.29.0213.
    [14]
    BLEICH H H, SANDLER I S. Interaction between structures and bilinear fluids [J]. International Journal of Solids and Structures, 1970, 6(5): 617–639. DOI: 10.1016/0020-7683(70)90034-X.
    [15]
    姚熊亮, 许维军, 梁德利. 水下爆炸时舰船冲击环境与冲击因子的关系 [J]. 哈尔滨工程大学学报, 2004, 25(1): 1–12. DOI: 10.3969/j.issn.1006-7043.2004.01.002.

    YAO X L, XU W J, LIANG D L. The relation of impulsive environment and impulsive factor on underwater explosion of ship [J]. Journal of Harbin Engineering University, 2004, 25(1): 1–12. DOI: 10.3969/j.issn.1006-7043.2004.01.002.
    [16]
    马艳, 陆芳, 黄红波, 等. 集装箱船模型螺旋桨空泡与脉动压力比对试验研究 [C]//第二十五届全国水动力学研讨会暨第十二届全国水动力学学术会议文集(上册). 北京: 海洋出版社, 2013.

    MA Y, LU F, HUANG H B, et al. Experimental study on coMParison of propeller cavitation and fluctuating pressure of container ship model [C]//Proceedings of the 25th National Hydrodynamics Symposium and the 12th National Hydrodynamics Conference. Beijing: China Ocean Press, 2013.
    [17]
    王波, 熊鹰, 时立攀. 确定螺旋桨螺距及拱度分布的一种数值优化方法 [C]//2015年船舶水动力学学术会议. 哈尔滨: 中国造船工程学会, 2015.

    WANG B, XIONG Y, SHI L P. A numerical optimization method for determining propeller pitch and camber distribution [C]//Proceedings of the 2015 Ship Hydrodynamics Symposium. Harbin: The Chinese Society of Naval Architects and Marine Engineers, 2015.
    [18]
    SALVATORE F. The INSEAN E779A database on propeller flow experimental investigations[R]. INSEAN Technical Report 99, 2006.
    [19]
    寇晓枫, 王高辉, 卢文波, 等. 空气隔层对水下爆炸冲击波的缓冲效应 [J]. 振动与冲击, 2017, 36(3): 7–13. DOI: 10.13465/j.cnki.jvs.2017.03.002.

    KOU X F, WANG G H, LU W B, et al. Mitigation effects of air interlayer on underwater explosion shock wave [J]. Journal of Vibration and Shock, 2017, 36(3): 7–13. DOI: 10.13465/j.cnki.jvs.2017.03.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(7)

    Article Metrics

    Article views (222) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return