Volume 44 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
QIAN Haimin, PAN Yahao, ZONG Zhouhong, GAN Lu, WU Xi, SUN Miaomiao. Experimental study on dynamic response of underground utility tunnel under ground explosion[J]. Explosion And Shock Waves, 2024, 44(7): 075102. doi: 10.11883/bzycj-2023-0400
Citation: QIAN Haimin, PAN Yahao, ZONG Zhouhong, GAN Lu, WU Xi, SUN Miaomiao. Experimental study on dynamic response of underground utility tunnel under ground explosion[J]. Explosion And Shock Waves, 2024, 44(7): 075102. doi: 10.11883/bzycj-2023-0400

Experimental study on dynamic response of underground utility tunnel under ground explosion

doi: 10.11883/bzycj-2023-0400
  • Received Date: 2023-11-02
  • Rev Recd Date: 2024-03-20
  • Available Online: 2024-03-21
  • Publish Date: 2024-07-15
  • To investigate the anti-external-blast performance of underground utility tunnel structures, field explosion tests were conducted to study the dynamic response characteristics and failure modes of cast-in-place and precast segmental utility tunnel structures subjected to the ground surface explosion. Via field explosion tests of 11 cases, the failure characteristics and dynamic responses of cast-in-place and precast segmental utility tunnels under explosion at different scaled distances were observed. The anti-blast performance of the cast-in-place and precast segmental utility tunnels was compared and analyzed. The research results indicate that both the roofs of cast-in-place and precast segmental utility tunnels ultimately exhibit bending and shear failure when subjected to ground explosion. The anti-blast performance of the cast-in-place utility tunnel is better than that of the precast segmental utility tunnel. The detonation position has a significant impact on the blast response of the precast segmental utility tunnel, and it is unfavorable when the detonation position is above the center of the segment. Under a small-scale ground surface explosion, the damaged area of the cast-in-place utility tunnel is larger than that of the precast segmental utility tunnel. The damage of the precast segmental utility tunnel is concentrated in the section or connection joint located near the explosion center, and there is a significant residual slip between segments.
  • loading
  • [1]
    钱七虎. 建设城市地下综合管廊, 转变城市发展方式 [J]. 隧道建设, 2017, 37(6): 647–654. DOI: 10.3973/j.issn.1672-741X.2017.06.001.

    QIAN Q H. To transform way of urban development by constructing underground utility tunnel [J]. Tunnel Construction, 2017, 37(6): 647–654. DOI: 10.3973/j.issn.1672-741X.2017.06.001.
    [2]
    高徐军, 周剑, 张玉, 等. 地下综合管廊抗爆性能及加固方法研究 [J]. 工程爆破, 2023, 29(2): 145–151, 158. DOI: 10.19931/j.EB.20210409.

    GAO X J, ZHOU J, ZHANG Y, et al. Study on blast resistance performance and reinforcement method of underground utility tunnel [J]. Engineering Blasting, 2023, 29(2): 145–151, 158. DOI: 10.19931/j.EB.20210409.
    [3]
    WANG S P, LI Z, FANG Q, et al. Performance of utility tunnels under gas explosion loads [J]. Tunnelling and Underground Space Technology, 2021, 109: 103762. DOI: 10.1016/j.tust.2020.103762.
    [4]
    XUE Y Z, CHEN G H, ZHANG Q, et al. Simulation of the dynamic response of an urban utility tunnel under a natural gas explosion [J]. Tunnelling and Underground Space Technology, 2021, 108: 103713. DOI: 10.1016/j.tust.2020.103713.
    [5]
    MENG Q F, WU C Q, HAO H, et al. Steel fibre reinforced alkali-activated geopolymer concrete slabs subjected to natural gas explosion in buried utility tunnel [J]. Construction and Building Materials, 2020, 246: 118447. DOI: 10.1016/j.conbuildmat.2020.118447.
    [6]
    ZHANG S H, MA H T, HUANG X M, et al. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel [J]. Process Safety and Environmental Protection, 2020, 140: 100–110. DOI: 10.1016/j.psep.2020.04.025.
    [7]
    刘希亮, 李烨, 王新宇, 等. 地下管廊在燃气爆炸作用下的动力响应分析 [J]. 高压物理学报, 2018, 32(6): 064104. DOI: 10.11858/gywlxb.20180544.

    LIU X L, LI Y, WANG X Y, et al. Dynamic response analysis of underground pipe gallery under gas explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 064104. DOI: 10.11858/gywlxb.20180544.
    [8]
    刘中宪, 王治坤, 张欢欢, 等. 燃气爆炸作用下地下综合管廊动力响应模拟 [J]. 防灾减灾工程学报, 2018, 38(4): 624–632. DOI: 10.13409/j.cnki.jdpme.2018.04.005.

    LIU Z X, WANG Z K, ZHANG H H, et al. Numerical simulation of blast-resistant performance of utility tunnel under gas explosion [J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(4): 624–632. DOI: 10.13409/j.cnki.jdpme.2018.04.005.
    [9]
    ZHANG Z J, LIU Z X, ZHANG H, et al. Spatial distribution and machine learning-based prediction model of natural gas explosion loads in a utility tunnel [J]. Tunnelling and Underground Space Technology, 2023, 140: 105272. DOI: 10.1016/j.tust.2023.105272.
    [10]
    ZHAO Y M, WU J S, ZHOU R, et al. Effects of the length and pressure relief conditions on propagation characteristics of natural gas explosion in utility tunnels [J]. Journal of Loss Prevention in the Process Industries, 2022, 75: 104679. DOI: 10.1016/j.jlp.2021.104679.
    [11]
    WANG S P, LI Z, FANG Q, et al. Numerical simulation of overpressure loads generated by gas explosions in utility tunnels [J]. Process Safety and Environmental Protection, 2022, 161: 100–117. DOI: 10.1016/j.psep.2022.03.014.
    [12]
    QIAN H M, ZONG Z H, WU C Q, et al. Numerical study on the behavior of utility tunnel subjected to ground surface explosion [J]. Thin-Walled Structures, 2021, 161: 107422. DOI: 10.1016/j.tws.2020.107422.
    [13]
    ZHOU Q, HE H G, LIU S F, et al. Blast resistance evaluation of urban utility tunnel reinforced with BFRP bars [J]. Defence Technology, 2021, 17(2): 512–530. DOI: 10.1016/j.dt.2020.03.015.
    [14]
    ZHOU Q, HE H G, LIU S F, et al. Evaluation of blast-resistant ability of shallow-buried reinforced concrete urban utility tunnel [J]. Engineering Failure Analysis, 2021, 119: 105003. DOI: 10.1016/j.engfailanal.2020.105003.
    [15]
    周强, 周健南, 周寅智, 等. 爆炸荷载作用下浅埋综合管廊野外试验与弹性动力响应分析 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024608. DOI: 10.1360/SSPMA-2019-0182.

    ZHOU Q, ZHOU J N, ZHOU Y Z, et al. Field test and elastic dynamic response analysis of shallow buried utility tunnel under explosion load [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2020, 50(2): 024608. DOI: 10.1360/SSPMA-2019-0182.
    [16]
    夏明, 汪剑辉, 刘飞, 等. 浅埋爆炸作用下综合管廊结构动力响应数值仿真研究 [J]. 防护工程, 2020, 42(5): 25–32. DOI: 10.3969/j.issn.1674-1854.2020.05.004.

    XIA M, WANG J H, LIU F, et al. Numerical simulation study on dynamic response of utility tunnel structure under shallow-buried explosion [J]. Protective Engineering, 2020, 42(5): 25–32. DOI: 10.3969/j.issn.1674-1854.2020.05.004.
    [17]
    张伟, 段亚鹏, 高永红, 等. 强动载作用下浅埋管廊结构试验研究 [J]. 信阳师范学院学报(自然科学版), 2023, 36(3): 495–501. DOI: 10.3969/j.issn.1003-0972.2023.03.025.

    ZHANG W, DUAN Y P, GAO Y H, et al. Experimental study on shallow-buried utility tunnel structure under strong dynamic load [J]. Journal of Xinyang Normal University (Natural Science Edition), 2023, 36(3): 495–501. DOI: 10.3969/j.issn.1003-0972.2023.03.025.
    [18]
    刘飞, 张昭, 辛凯, 等. 基于量纲分析的地下结构顶板外爆炸荷载分布 [J]. 防护工程, 2023, 45(3): 1–8. DOI: 10.3969/j.issn.1674-1854.2023.03.001.

    LIU F, ZHANG Z, XIN K, et al. Study of blast load distribution on underground structure roof based on dimensional analysis [J]. Protective Engineering, 2023, 45(3): 1–8. DOI: 10.3969/j.issn.1674-1854.2023.03.001.
    [19]
    QIAN H M, LI J, PAN Y H, et al. Numerical derivation of P-I diagrams for shallow buried RC box structures [J]. Tunnelling and Underground Space Technology, 2022, 124: 104454. DOI: 10.1016/j.tust.2022.104454.
    [20]
    PAN Y H, LI J, ZONG Z H, et al. Experimental and numerical study on ground shock propagation in calcareous sand [J]. International Journal of Impact Engineering, 2023, 180: 104724. DOI: 10.1016/j.ijimpeng.2023.104724.
    [21]
    QIAN H M, LI J, ZONG Z H, et al. Behavior of precast segmental utility tunnel under ground surface explosion: a numerical study [J]. Tunnelling and Underground Space Technology, 2021, 115: 104071. DOI: 10.1016/j.tust.2021.104071.
    [22]
    薛伟辰, 王恒栋, 油新华, 等. 我国预制拼装综合管廊结构体系发展现状与展望 [J]. 施工技术, 2018, 47(12): 6–9. DOI: 10.7672/sgjs2018120006.

    XUE W C, WANG H D, YOU X H, et al. Status and prospect of precast assembly utility tunnel structure system in China [J]. Construction Technology, 2018, 47(12): 6–9. DOI: 10.7672/sgjs2018120006.
    [23]
    魏奇科, 王宇航, 王永超, 等. 叠合装配式地下综合管廊节点抗震性能试验研究 [J]. 建筑结构学报, 2019, 40(2): 246–254. DOI: 10.14006/j.jzjgxb.2019.02.024.

    WEI Q K, WANG Y H, WANG Y C, et al. Experiment study on seismic performance of joints in prefabricated sandwich structures of utility tunnels [J]. Journal of Building Structures, 2019, 40(2): 246–254. DOI: 10.14006/j.jzjgxb.2019.02.024.
    [24]
    张学杰. 爆炸荷载作用下FRP加固钢筋混凝土柱动态响应精细化分析及损伤评估方法研究 [D]. 天津: 天津大学, 2020: 103–104. DOI: 10.27356/d.cnki.gtjdu.2020.002916.

    ZHANG X J. Research on methods for refined dynamic response analysis and damage assessment of FRP strengthened RC columns subjected to blast loading [D]. Tianjin: Tianjin University, 2020: 103–104. DOI: 10.27356/d.cnki.gtjdu.2020.002916.
    [25]
    HAO H, HAO Y F, LI J, et al. Review of the current practices in blast-resistant analysis and design of concrete structures [J]. Advances in Structural Engineering, 2016, 19(8): 1193–1223. DOI: 10.1177/1369433216656430c.
    [26]
    KRAUTHAMMER T. Modern protective structures [M]. Boca Raton: CRC Press, 2008: 234–236.
    [27]
    Departments of the Army the Navy, and the Air Force. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington: US Department of Defense, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(7)

    Article Metrics

    Article views (233) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return