Citation: | ZHAO Tiejun, LIU Yi, WU Yongxiang, YAN Honghao, WU Linsong. Study on hydrogen-oxygen detonation process and the growth of carbon-iron nanomaterials in a detonation tube[J]. Explosion And Shock Waves, 2024, 44(11): 112101. doi: 10.11883/bzycj-2023-0404 |
[1] |
WANG X S, VASILEFF A, JIAO Y, et al. Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting [J]. Advanced Materials, 2019, 31(13): 1803625. DOI: 10.1002/adma.201803625.
|
[2] |
YANG Z F, TIAN J R, YIN Z F, et al. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review [J]. Carbon, 2019, 141: 467–480. DOI: 10.1016/j.carbon.2018.10.010.
|
[3] |
LU F, ASTRUC D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants [J]. Coordination Chemistry Reviews, 2020, 408: 213180. DOI: 10.1016/j.ccr.2020.213180.
|
[4] |
CHARINPANITKUL T, TANTHAPANICHAKOON W, SANO N. Carbon nanostructures synthesized by arc discharge between carbon and iron electrodes in liquid nitrogen [J]. Current Applied Physics, 2009, 9(3): 629–632. DOI: 10.1016/j.cap.2008.05.018.
|
[5] |
WANG X, XU B, LIU X, et al. Synthesis of Fe-included onion-like fullerenes by chemical vapor deposition [J]. Diamond and Related Materials, 2006, 15(1): 147–150. DOI: 10.1016/j.diamond.2005.09.005.
|
[6] |
徐斌, 楼白杨, 曹小海, 等. 纳米铜修饰多壁碳纳米管/石蜡相变驱动复合材料的制备及热性能 [J]. 复合材料学报, 2015, 32(2): 427–434. DOI: 10.13801/j.cnki.fhclxb.20140723.001.
XU B, LOU B Y, CAO X H, et al. Preparation and thermal properties of copper modified multi-walled carbon nanotubes/paraffin phase transition-driven composites [J]. Journal of Composite Materials, 2015, 32(2): 427–434. DOI: 10.13801/j.cnki.fhclxb.20140723.001.
|
[7] |
张宏, 赵俊峰, 张锡兰, 等. ZnO/CNTs复合材料吸附脱除H2S的性能研究 [J]. 化学研究, 2017, 28(5): 612–616. DOI: 10.14002/j.hxya.2017.05.014.
ZHANG H, ZHAO J F, ZHANG X L, et al. Study on the adsorption and removal of H2S by ZnO/CNTs composites [J]. Chinese Journal of Chemical Research, 2017, 28(5): 612–616. DOI: 10.14002/j.hxya.2017.05.014.
|
[8] |
NEPAL A, SINGH G P, FLANDERS B N, et al. One-step synthesis of graphene via catalyst-free gas-phase hydrocarbon detonation [J]. Nanotechnology, 2013, 24(24): 245602. DOI: 10.1088/0957-4484/24/24/245602.
|
[9] |
SHTERTSER A A, RYBIN D K, YU V Y, et al. Characterization of nanoscale detonation carbon produced in a pulse gas-detonation device [J]. Diamond and Related Materials, 2020, 101: 107553. DOI: 10.1016/j.diamond.2019.107553.
|
[10] |
XIANG J X, LUO N, YAN H H, et al. Preparation and formation mechanism of spherical Cu nanoparticles by gaseous detonation [J]. Rare Metal Materials and Engineering, 2019, 48(10): 3113–3117.
|
[11] |
ZHAO T J, WANG X H, LI X J, et al. Gaseous detonation synthesis of Co@C nanoparticles/CNTs materials [J]. Materials Letters, 2019, 236: 179–182. DOI: 10.1016/j.matlet.2018.10.105.
|
[12] |
ZHAO T J, LI X J, JOHN L, et al. The effects of hydrogen proportion on the synthesis of carbon nanomaterials with gaseous detonation (deflagration) method [J]. Materials Research Express, 2018, 5(2):025024 DOI: 10.1088/2053-1591/aaadd6.
|
[13] |
ZHAO T J, LI X J, WANG Y, et al. Growth mechanism and wave-absorption properties of multiwalled carbon nanotubes fabricated using a gaseous detonation method [J]. Materials Research Bulletin, 2018, 102: 153–159. DOI: 10.1016/j.materresbull.2018.02.033.
|
[14] |
HE C, YAN H H, LI X J, et al. Ultrafast preparation of polymer carbon dots with solid-state fluorescence for white light-emitting diodes [J]. Materials Research Express, 2019, 6(6): 065609. DOI: 10.1088/2053-1591/ab0c42.
|
[15] |
SHTERTSER A A, ULIANITSKY V Y, BATRAEV I S, et al. Production of nanoscale detonation carbon using a pulse gas-detonation device [J]. Technical Physics Letters, 2018, 44: 395–397. DOI: 10.1134/S1063785018050139.
|
[16] |
闫鸿浩, 赵铁军, 孙贵磊, 等. 气相爆轰合成碳包铁的影响因素 [J]. 无机材料学报, 2016, 31(5): 542–546. DOI: 10.15541/jim20150544.
YAN H H, ZHAO T J, SUN G L, et al. Influencing factors of carbon-clad iron synthesis by gas-phase detonation [J]. Journal of Inorganic Materials, 2016, 31(5): 542–546. DOI: 10.15541/jim20150544.
|
[17] |
YAN H H, ZHANG X F, LI X J, et al. The influence of ar on the synthesis of carbon-coated copper nanoparticles in gaseous detonation [J]. Current Nanoscience, 2018, 14(5): 360–365. DOI: 10.2174/1573413714666180502130314.
|
[18] |
杨瑞, 李晓杰, 闫鸿浩, 等. 初始温度及碳源对碳纳米管气相爆轰法合成的影响 [J]. 强激光与粒子束, 2017, 29(2): 56–60. DOI: 10.11884/HPLPB201729.160402.
YANG R, LI X J, YAN H H, et al. Effects of initial temperature and carbon source on the synthesis of carbon nanotubes by vapor phase detonation [J]. High Power Laser and Particle Beams, 2017, 29(2): 56–60. DOI: 10.11884/HPLPB201729.160402.
|
[19] |
FRY D, CHAKRABARTI A, KIM W, et al. Structural crossover in dense irreversibly aggregating particulate systems [J]. Physical Review E, 2004, 69(6): 061401. DOI: 10.1103/PhysRevE.69.061401.
|
[20] |
DHAUBHADEL R, PIERCE F, CHAKRABARTI A, et al. Hybrid superaggregate morphology as a result of aggregation in a cluster-dense aerosol [J]. Physical Review E, 2006, 73(1): 011404. DOI: 10.1103/PhysRevE.73.011404.
|
[21] |
KIM K, SORENSEN C M, CHAKRABARTI A. Universal occurrence of soot superaggregates with a fractal dimension of 2.6 in heavily sooting laminar diffusion flames [J]. Langmuir, 2004, 20(10): 3969–3973. DOI: 10.1021/la036085%2B.
|
[22] |
李晓杰, 杨瑞, 闫鸿浩. 氧气浓度对气相爆轰合成纳米碳球的影响 [J]. 高压物理学报, 2017, 31(1): 15–20. DOI: 10.11858/gywlxb.2017.01.003.
LI X J, YANG R, YAN H H. Effect of oxygen concentration on synthesis of carbon nanospheres by gas-phase detonation [J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 15–20. DOI: 10.11858/gywlxb.2017.01.003.
|
[23] |
LUO N, XIANG J X, SHEN T, et al. One-step gas-liquid detonation synthesis of carbon nano-onions and their tribological performance as lubricant additives [J]. Diamond and Related Materials, 2019, 97: 107448. DOI: 10.1016/j.diamond.2019.107448.
|
[24] |
HE C, YAN H H, LI X J, et al. One-step rapid fabrication of high-purity onion-like carbons as efficient lubrication additives [J]. Journal of Materials Science, 2021, 56(2): 1286–1297. DOI: 10.1007/s10853-020-05311-0.
|
[25] |
XIANG J X, LUO N, SHEN T, et al. Rapid synthesis of carbon/graphite encapsulated iron-based composite nanoparticles by a gaseous-liquid detonation [J]. Diamond and Related Materials, 2018, 90: 1–6. DOI: 10.1016/j.diamond.2018.09.017.
|
[26] |
ZHAO T J, LI X J, YAN H H. Metal catalyzed preparation of carbon nanomaterials by hydrogen-oxygen detonation method [J]. Combustion and Flame, 2018, 196: 108–115. DOI: 10.1016/j.combustflame.2018.06.011.
|
[27] |
赵铁军, 王自法, 闫鸿浩, 等. 气相爆轰反应中纳米TiO2颗粒的动态收集及微观生长机制 [J]. 高压物理学报, 2021, 35(5): 053201. DOI: 10.11858/gywlxb.2021.07.046.
ZHAO T J, WANG Z F, YAN H H, et al. Dynamic collection and microscopic growth mechanism of nano TiO2 articles in gas-phase detonation reaction [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 053201. DOI: 10.11858/gywlxb.2021.07.046.
|
[28] |
ZHAO T J, WU L S, WANG Z F, et al. Insight on the growth mechanism of TiO2 nanoparticles via gaseous detonation intercepting collection [J]. Ceramics International, 2023, 49(6): 9857–9861. DOI: 10.1016/j.ceramint.2022.11.160.
|
[29] |
YAN H H, ZHAO T J, LI X J, et al. Hydrogen and air detonation (deflagration) synthesis of carbon-encapsulated iron nanoparticles [J]. Combustion Explosion and Shock Waves, 2015, 51(4): 495–501. DOI: 10.1134/S0010508215040152.
|
[30] |
YAN H H, HUN C H, LI X J, et al. Synthesis of carbon-encapsulated iron nanoparticles by gaseous detonation of hydrogen and oxygen at different temperatures within detonation tube [J]. Rare Metal Materials and Engineering, 2015, 44(9): 2152–2155. DOI: 10.1016/S1875-5372(16)30015-7.
|
[31] |
闫鸿浩, 赵铁军, 李晓杰, 等. 碳包覆铁纳米颗粒的气相爆轰合成 [J]. 高压物理学报, 2016, 30(3): 207–212. DOI: 10.11858/gywlxb.2016.03.005.
YAN H H, ZHAO T J, LI X J, et al. Vapor phase detonation synthesis of carbon-coated iron nanoparticles [J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 207–212. DOI: 10.11858/gywlxb.2016.03.005.
|
[32] |
潘训岑, 李雪琪, 李晓杰, 等. 气相爆轰法合成超细碳包铁纳米颗粒 [J]. 稀有金属材料与工程, 2019, 48(3): 981–986.
PAN X C, LI X Q, LI X J, et al. Synthesis of ultrafine carbon-clad iron-clad nanoparticles by gas phase detonation method [J]. Rare Metal Materials and Engineering, 2019, 48(3): 981–986.
|