Citation: | CHEN Xiaokun, WANG Jun, CHENG Fangming. Research progress on hydrogen gas explosion suppression materials and their suppression mechanisms[J]. Explosion And Shock Waves, 2024, 44(11): 111101. doi: 10.11883/bzycj-2023-0418 |
[1] |
RICCI M, BELLABY P, FLYNN R. What do we know about public perceptions and acceptance of hydrogen ? : a critical review and new case study evidence [J]. International Journal of Hydrogen Energy, 2008, 33(21): 5868–5880. DOI: 10.1016/j.ijhydene.2008.07.106.
|
[2] |
TANG C L, ZHANG Y J, HUANG Z H. Progress in combustion investigations of hydrogen enriched hydrocarbons [J]. Renewable and Sustainable Energy Reviews, 2014, 30: 195–216. DOI: 10.1016/j.rser.2013.10.005.
|
[3] |
ACAR C, DINCER I. The potential role of hydrogen as a sustainable transportation fuel to combat global warming [J]. International Journal of Hydrogen Energy, 2020, 45(5): 3396–3406. DOI: 10.1016/j.ijhydene.2018.10.149.
|
[4] |
SINGH S, JAIN S, PS V, et al. Hydrogen: A sustainable fuel for future of the transport sector [J]. Renewable and Sustainable Energy Reviews, 2015, 51: 623–633. DOI: 10.1016/j.rser.2015.06.040.
|
[5] |
MAYRHOFER M, KOLLER M, SEEMANN P, et al. Assessment of natural gas/hydrogen blends as an alternative fuel for industrial heat treatment furnaces [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21672–21686. DOI: 10.1016/j.ijhydene.2021.03.228.
|
[6] |
MORADI R, GROTH K M. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis [J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254–12269. DOI: 10.1016/j.ijhydene.2019.03.041.
|
[7] |
林言训, 秦家俊. 小型氮肥厂的爆炸事故及預防措施 [J]. 劳动, 1963(5): 32–33.
LIN Y X, QIN J J. Explosion accidents and preventive measures in small nitrogen fertilizer plants [J]. Labor, 1963(5): 32–33.
|
[8] |
汪德山. 氢气燃爆现象种种 [J]. 甘肃消防, 1999(8): 17.
Wang D S. Various hydrogen explosion phenomena [J]. Gansu Fire Protection, 1999(8): 17.
|
[9] |
LAHNAOUI A, WULF C, HEINRICHS H, et al. Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks [J]. International Journal of Hydrogen Energy, 2019, 44(35): 19302–19312. DOI: 10.1016/j.ijhydene.2018.10.234.
|
[10] |
SAZALI N. Emerging technologies by hydrogen: a review [J]. International Journal of Hydrogen Energy, 2020, 45(38): 18753–18771. DOI: 10.1016/j.ijhydene.2020.05.021.
|
[11] |
AARSKOG F G, HANSEN O R, STRØMGREN T, et al. Concept risk assessment of a hydrogen driven high speed passenger ferry [J]. International Journal of Hydrogen Energy, 2020, 45(2): 1359–1372. DOI: 10.1016/j.ijhydene.2019.05.128.
|
[12] |
郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究 [D]. 重庆: 重庆大学, 2017.
ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methane deflagration in ducts [D]. Chongqing: Chongqing University, 2017.
|
[13] |
高玉刚. 管道中可燃气体燃爆特性研究 [D]. 淮南: 安徽理工大学, 2011.
GAO Y G. Study on burning explosion characteristics of flammable gas in tube [D]. Huainan: Anhui University of Science & Technology, 2011.
|
[14] |
孙占强, 余磊. 长输管道合于使用评价常见问题总结 [J]. 云南化工, 2023, 50(6): 163–165. DOI: 10.3969/j.issn.1004-275X.2023.06.44.
SUN Z Q, YU L. Summary of common problems in the evaluation of suitability for use of long-distance pipelines [J]. Yunnan Chemical Technology, 2023, 50(6): 163–165. DOI: 10.3969/j.issn.1004-275X.2023.06.44.
|
[15] |
CROWL D A, JO Y D. The hazards and risks of hydrogen [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(2): 158–164. DOI: 10.1016/j.jlp.2007.02.002.
|
[16] |
NG H D, LEE J H S. Comments on explosion problems for hydrogen safety [J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2): 136–146. DOI: 10.1016/j.jlp.2007.06.001.
|
[17] |
李一鸣. 七氟丙烷抑制甲烷-空气爆炸的实验研究 [D]. 大连: 大连理工大学, 2018.
LI Y M. Experimental study of suppressing the methane/air explosion by heptafluoropropane [D]. Dalian: Dalian University of Technology, 2018.
|
[18] |
SU Y, LUO Z M, WANG T, et al. Effect of nitrogen on deflagration characteristics of hydrogen/methane mixture [J]. International Journal of Hydrogen Energy, 2022, 47(15): 9156–9168. DOI: 10.1016/j.ijhydene.2022.01.013.
|
[19] |
RAZUS D, MITU M, GIURCAN V, et al. Numerical study of pressure and composition influence on laminar flame propagation in nitrogen-diluted H2-O2 mixtures [J]. Revue Roumaine de Chimie, 2020, 65(6): 529–537. DOI: 10.33224/rrch.2020.65.6.02.
|
[20] |
PARK J, KIM J S, CHUNG J O, et al. Chemical effects of added CO2 on the extinction characteristics of H2/CO/CO2 syngas diffusion flames [J]. International Journal of Hydrogen Energy, 2009, 34(20): 8756–8762. DOI: 10.1016/j.ijhydene.2009.08.046.
|
[21] |
刘原一, 朱轶铭, 熊英莹, 等. N2/CO2气氛对CO/H2爆燃特性的影响 [J]. 燃烧科学与技术, 2014, 20(5): 383–387. DOI: 10.11715/rskxjs.R201404011.
LIU Y Y, ZHU Y M, XIONG Y Y, et al. Influence of N2/CO2 on deflagration characteristics of CO/H2 [J]. Journal of Combustion Science and Technology, 2014, 20(5): 383–387. DOI: 10.11715/rskxjs.R201404011.
|
[22] |
YAN C C, BI M S, LI Y C, et al. Effects of nitrogen and carbon dioxide on hydrogen explosion behaviors near suppression limit [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104228. DOI: 10.1016/j.jlp.2020.104228.
|
[23] |
LI Y C, BI M S, HUANG L, et al. Hydrogen cloud explosion evaluation under inert gas atmosphere [J]. Fuel Processing Technology, 2018, 180: 96–104. DOI: 10.1016/j.fuproc.2018.08.015.
|
[24] |
WEI H Q, XU Z L, ZHOU L, et al. Effect of hydrogen-air mixture diluted with argon/nitrogen/carbon dioxide on combustion processes in confined space [J]. International Journal of Hydrogen Energy, 2018, 43(31): 14798–14805. DOI: 10.1016/j.ijhydene.2018.06.038.
|
[25] |
WANG L Q, MA H H, SHEN Z W. Explosion characteristics of hydrogen-air mixtures diluted with inert gases at sub-atmospheric pressures [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22527–22536. DOI: 10.1016/j.ijhydene.2019.01.059.
|
[26] |
邹颖, 董冰岩, 查裕学, 等. 密闭受限空间内N2、CO2对H2/Air混合气体的抑爆效果研究 [J]. 科技与创新, 2022(17): 87–92. DOI: 10.15913/j.cnki.kjycx.2022.17.028.
ZOU Y, DONG B Y, ZHA Y X, et al. Study on the explosion suppression effect of N2 and CO2 on H2/air mixed gas in confined enclosed spaces [J]. Science and Innovation, 2022(17): 87–92. DOI: 10.15913/j.cnki.kjycx.2022.17.028.
|
[27] |
WANG J Y, LIANG Y T, ZHAO Z Z. Effect of N2 and CO2 on explosion behavior of H2-liquefied petroleum gas-air mixtures in a confined space [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23887–23897. DOI: 10.1016/j.ijhydene.2022.05.152.
|
[28] |
CHANG X Y, BAI C H, ZHANG B. The effect of gas jets on the explosion dynamics of hydrogen-air mixtures [J]. Process Safety and Environmental Protection, 2022, 162: 384–394. DOI: 10.1016/j.psep.2022.04.032.
|
[29] |
WU Y, YU X, WANG Z C, et al. The flame mitigation effect of N2 and CO2 on the hydrogen jet fire [J]. Process Safety and Environmental Protection, 2022, 165: 658–670. DOI: 10.1016/j.psep.2022.07.027.
|
[30] |
ZHANG S Y, WEN X P, GUO Z D, et al. Experimental study on the multi-level suppression of N2 and CO2 on hydrogen-air explosion [J]. Process Safety and Environmental Protection, 2023, 169: 970–981. DOI: 10.1016/j.psep.2022.11.069.
|
[31] |
邹颖. 密闭空间内H2爆炸及CO2、N2抑爆过程的数值模拟及实验研究 [D]. 赣州: 江西理工大学, 2022. DOI: 10.27176/d.cnki.gnfyc.2022.000560.
ZOU Y. Numerical simulation and experimental study of H2 explosion and SUPPR ESSION of CO2 and N2 explosion in confined space [D]. Ganzhou: Jiangxi University of Science and Technology, 2022. DOI: 10.27176/d.cnki.gnfyc.2022.000560.
|
[32] |
TROPIN D. Numerical modeling of suppression of detonation waves in hydrogen-air mixture by system of inert particles clouds [J]. International Journal of Hydrogen Energy, 2022, 47(66): 28699–28709. DOI: 10.1016/j.ijhydene.2022.06.169.
|
[33] |
姜程山. 氢气的爆炸极限抑制研究 [D]. 济南: 山东建筑大学, 2017.
JIANG C S. Inhibition of hydrogen's explosion limits [D]. Ji’nan: Shandong Jianzhu University, 2017.
|
[34] |
马文丽. 哈龙灭火剂替代产品的分类及特点研究 [J]. 忻州师范学院学报, 2008, 24(4): 132–134. DOI: 10.3969/j.issn.1671-1491.2008.04.047.
MA W L. Study on classification and characteristics of Halon fire extinguishing agent substitute products [J]. Journal of Xinzhou Teachers University, 2008, 24(4): 132–134. DOI: 10.3969/j.issn.1671-1491.2008.04.047.
|
[35] |
FAN R J, WANG Z R, GUO W J, et al. Experimental and theoretical study on the suppression effect of CF3CHFCF3 (FM-200) on hydrogen-air explosion [J]. International Journal of Hydrogen Energy, 2022, 47(26): 13191–13198. DOI: 10.1016/j.ijhydene.2022.02.062.
|
[36] |
DRAKON A, EREMIN A, MATVEEVA N, et al. The opposite influences of flame suppressants on the ignition of combustible mixtures behind shock waves [J]. Combustion and Flame, 2017, 176: 592–598. DOI: 10.1016/j.combustflame.2016.11.001.
|
[37] |
DRAKON A, EREMIN A. On relative effectiveness of halogenated hydrocarbons for suppression of hydrogen-oxygen mixture autoignition [J]. Combustion Science and Technology, 2018, 190(3): 550–555. DOI: 10.1080/00102202.2017.1402011.
|
[38] |
GAO M D, BI M S, YE L L, et al. Suppression of hydrogen-air explosions by hydrofluorocarbons [J]. Process Safety and Environmental Protection, 2021, 145: 378–387. DOI: 10.1016/j.psep.2020.08.036.
|
[39] |
SHANG S, BI M S, ZHANG K, et al. Suppression of hydrogen-air explosions by isobutene with special molecular structure [J]. International Journal of Hydrogen Energy, 2022, 47(61): 25864–25875. DOI: 10.1016/j.ijhydene.2022.06.012.
|
[40] |
SHANG S, BI M S, ZHANG Z L, et al. Synergistic effects of isobutene and carbon dioxide on suppressing hydrogen-air explosions [J]. International Journal of Hydrogen Energy, 2022, 47(60): 25433–25442. DOI: 10.1016/j.ijhydene.2022.05.256.
|
[41] |
李卓然, 夏远辰, 张彬, 等. 细水雾对置障管内预混气体抑爆机理研究 [J]. 消防科学与技术, 2021, 40(6): 884–887. DOI: 10.3969/j.issn.1009-0029.2021.06.024.
LI Z R, XIA Y C, ZHANG B, et al. Study on the suppression mechanism of water mist on the deflagration of premixed methane gas in a barrier tube [J]. Fire Science and Technology, 2021, 40(6): 884–887. DOI: 10.3969/j.issn.1009-0029.2021.06.024.
|
[42] |
汪剑辉, 刘飞, 薛一江. 可燃气云抑爆技术初探 [J]. 工程爆破, 2011, 17(2): 19–22. DOI: 10.3969/j.issn.1006-7051.2011.02.005.
WANG J H, LIU F, XUE Y J. Preliminary discuss on explosion suppression technique of flammable gas cloud [J]. Engineering Blasting, 2011, 17(2): 19–22. DOI: 10.3969/j.issn.1006-7051.2011.02.005.
|
[43] |
ZALOSH R G, BAJPAI S N. Effect of water fogs on the deliberate ignition of hydrogen. Final report: EPRI-NP-2637 [R]. Norwood: Factory Mutual Research Corp. , 1982.
|
[44] |
LUANGDILOK W, BENNETT R B. Fog inerting effects on hydrogen combustion in a PWR ice condenser containment [J]. Journal of Heat Transfer, 1995, 117(2): 502–507. DOI: 10.1115/1.2822550.
|
[45] |
BUTZ J R, FRENCH P. Application of fine water mists to hydrogen deflagrations [C]//Proceedings of the Halon Alternatives Technical Working Conference. Albuquerque, NM. 1993: 345-356.
|
[46] |
JONES S J, AVERILL A F, INGRAM J M, et al. Mitigation of hydrogen-air explosions using fine water mist sprays [C]// Symposium on Hazards: Process Safety and Environmental Protection. Manchester, UK: IChemE Symposium Series No. 151, 2006: 1-10.
|
[47] |
INGRAM J M, AVERILL A F, BATTERSBY P N, et al. Suppression of hydrogen–oxygen–nitrogen explosions by fine water mist: Part 1. Burning velocity [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19250–19257. DOI: 10.1016/j.ijhydene.2012.09.092.
|
[48] |
MODAK A U, ABBUD-MADRID A, DELPLANQUE J P, et al. The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen–, methane–, and propane–air flames [J]. Combustion and Flame, 2006, 144(1/2): 103–111. DOI: 10.1016/j.combustflame.2005.07.003.
|
[49] |
XIA Y C, ZHANG B, ZHANG J N, et al. Experimental research on combined effect of obstacle and local spraying water fog on hydrogen/air premixed explosion [J]. International Journal of Hydrogen Energy, 2022, 47(94): 40099–40115. DOI: 10.1016/j.ijhydene.2022.09.152.
|
[50] |
胡耀元, 钟依均, 应桃开, 等. H2, CO, CH4多元爆炸性混合气体支链爆炸阻尼效应 [J]. 化学学报, 2004, 62(10): 956–962. DOI: 10.3321/j.issn:0567-7351.2004.10.006.
HU Y Y, ZHONG Y J, YING T K, et al. Damping effect on the branch-chain explosion of polybasic explosive mixture gas containing H2, CO and CH4 [J]. Acta Chimica Sinica, 2004, 62(10): 956–962. DOI: 10.3321/j.issn:0567-7351.2004.10.006.
|
[51] |
WEI S M, YU M G, PEI B, et al. Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3 [J]. Fuel, 2022, 328: 125235. DOI: 10.1016/j.fuel.2022.125235.
|
[52] |
WANG Z R, XU H, LU Y W, et al. Experimental and theoretical study on the suppression effect of water mist containing dimethyl methylphosphonate (DMMP) on hydrogen jet flame [J]. Fuel, 2023, 331: 125813. DOI: 10.1016/j.fuel.2022.125813.
|
[53] |
夏煜, 程扬帆, 胡芳芳, 等. 典型固体抑爆剂对乙炔-空气的抑爆特性 [J]. 高压物理学报, 2022, 36(6): 065201. DOI: 10.11858/gywlxb.20220580.
XIA Y, CHENG Y F, HU F F, et al. Inhibition characteristics of typical solid explosion suppressors on acetylene-air explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065201. DOI: 10.11858/gywlxb.20220580.
|
[54] |
LUO Z M, SU Y, CHEN X K, et al. Effect of BC powder on hydrogen/methane/air premixed gas deflagration [J]. Fuel, 2019, 257: 116095. DOI: 10.1016/j.fuel.2019.116095.
|
[55] |
田莉. 受限空间内氢气/甲烷/空气混合物爆炸特性及抑爆研究 [D]. 杭州: 中国计量大学, 2019. DOI: 10.27819/d.cnki.gzgjl.2019.000072.
TIAN L. Study on characteristics and suppression of hydrogen/methane/air mixture explosion in enclosed space [D]. Hangzhou: China Jiliang University, 2019. DOI: 10.27819/d.cnki.gzgjl.2019.000072.
|
[56] |
TSAI Y T, FU T, ZHOU Q. Explosion characteristics and suppression of hybrid Mg/H2 mixtures [J]. International Journal of Hydrogen Energy, 2021, 46(78): 38934–38943. DOI: 10.1016/j.ijhydene.2021.09.145.
|
[57] |
LI Y, CHEN X F, YUAN B H, et al. Synthesis of a novel prolonged action inhibitor with lotus leaf-like appearance and its suppression on methane/hydrogen/air explosion [J]. Fuel, 2022, 329: 125401. DOI: 10.1016/j.fuel.2022.125401.
|
[58] |
LI Y, ZHAO Q, LIU L J, et al. Investigation on the flame and explosion suppression of hydrogen/air mixtures by porous copper foams in the pipe with large aspect ratio [J]. Journal of Loss Prevention in the Process Industries, 2022, 76: 104744. DOI: 10.1016/j.jlp.2022.104744.
|
[59] |
BIVOL G Y, GOLOVASTOV S V. Suppression of hydrogen-air detonation using porous materials in the channels of different cross section [J]. International Journal of Hydrogen Energy, 2021, 46(24): 13471–13483. DOI: 10.1016/j.ijhydene.2021.01.052.
|
[60] |
SONG X Z, ZUO X C, YANG Z K, et al. The explosion-suppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures [J]. International Journal of Hydrogen Energy, 2020, 45(56): 32686–32701. DOI: 10.1016/j.ijhydene.2020.08.197.
|
[61] |
段玉龙, 王硕, 贺森, 等. 多孔材料下气体爆炸转扩散燃烧的特性研究 [J]. 爆炸与冲击, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.
DUAN Y L, WANG S, HE S, et al. Characteristics of gas explosion to diffusion combustion under porous materials [J]. Explosion and Shock Waves, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.
|
[62] |
HOLBORN P G, BATTERSBY P, INGRAM J M, et al. Estimating the effect of water fog and nitrogen dilution upon the burning velocity of hydrogen deflagrations from experimental test data [J]. International Journal of Hydrogen Energy, 2013, 38(16): 6882–6895. DOI: 10.1016/j.ijhydene.2013.03.063.
|
[63] |
BATTERSBY P N, AVERILL A F, INGRAM J M, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist: part 2: mitigation of vented deflagrations [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19258–19267. DOI: 10.1016/j.ijhydene.2012.10.029.
|
[64] |
苏洋, 罗振敏, 王涛. CO2/海泡石抑爆剂对氢气/甲烷爆炸特性参数的影响 [J]. 化工进展, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.
SU Y, LUO Z M, WANG T. Effect of CO2/sepiolite explosion suppressant on hydrogen/methane deflagration characteristic parameters [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.
|
[65] |
YANG Z K, ZHAO K, SONG X Z, et al. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture [J]. International Journal of Hydrogen Energy, 2021, 46(70): 34998–35013. DOI: 10.1016/j.ijhydene.2021.08.035.
|
[66] |
程方明, 南凡, 罗振敏, 等. 瓦斯抑爆材料及机理研究进展与发展趋势 [J]. 煤炭科学技术, 2021, 49(8): 114–124. DOI: 10.13199/j.cnki.cst.2021.08.015.
CHENG F M, NAN F, LUO Z M, et al. Research progress and development trend of gas explosion suppression materials and mechanism [J]. Coal Science and Technology, 2021, 49(8): 114–124. DOI: 10.13199/j.cnki.cst.2021.08.015.
|
[67] |
陈硕, 路长, 苏振国, 等. 煤矿瓦斯爆炸发展规律及防治的综述及展望 [J]. 火灾科学, 2021, 30(2): 63–79. DOI: 10.3969/j.issn.1004-5309.2021.02.01.
CHEN S, LU C, SU Z G, et al. Review on development and prevention of coal mine gas explosion [J]. Fire Safety Science, 2021, 30(2): 63–79. DOI: 10.3969/j.issn.1004-5309.2021.02.01.
|
[68] |
MOORE P E. Suppressants for the control of industrial explosions [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 119–123. DOI: 10.1016/0950-4230(95)00045-3.
|
[69] |
王任伟. N2/CO2/Ar稀释气体对甲烷预混层流火焰速度影响的物理与化学效应研究 [D]. 武汉: 华中科技大学, 2021. DOI: 10.27157/d.cnki.ghzku.2021.002801.
WANG R W. A thesis submitted in partial fulfillment of the requirements for the degree of master of engineering [D]. Wuhan: Huazhong University of Science and Technology, 2021. DOI: 10.27157/d.cnki.ghzku.2021.002801.
|
[70] |
左前明, 程卫民, 汤家轩. 粉体抑爆剂在煤矿应用研究的现状与展望 [J]. 煤炭技术, 2010, 29(11): 78–80.
ZUO Q M, CHENG W M, TANG J X. Current status and prospects of application and research of powder coal mine explosion suppression agent [J]. Coal Technology, 2010, 29(11): 78–80.
|
[71] |
李艳超. 氢气火焰失稳传播与爆炸压力的耦合影响机制研究 [D]. 大连: 大连理工大学, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003558.
LI Y C. Dynamic couplings of unstable hydrogen flame propagation and explosion pressure evolution [D]. Dalian: Dalian University of Technology, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003558.
|
[72] |
SU B, LUO Z M, WANG T, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture [J]. Journal of Hazardous Materials, 2021, 403: 123680. DOI: 10.1016/j.jhazmat.2020.123680.
|
[73] |
闫彩彩. 近抑爆极限氢气爆炸动力学行为研究 [D]. 大连: 大连理工大学, 2020. DOI: 10.26991/d.cnki.gdllu.2020.000377.
YAN C C. Study on hydrogen explosion dynamics near explosion suppression limit [D]. Dalian: Dalian University of Technology, 2020. DOI: 10.26991/d.cnki.gdllu.2020.000377.
|
[74] |
LI Y C, BI M S, ZHOU Y H, et al. Hydrogen cloud explosion suppression by micron-size water mist [J]. International Journal of Hydrogen Energy, 2022, 47(55): 23462–23470. DOI: 10.1016/j.ijhydene.2022.05.132.
|
[75] |
张天巍. 含钾盐添加剂细水雾的灭火有效性及机理研究 [D]. 北京: 北京理工大学, 2017. DOI: 10.26948/d.cnki.gbjlu.2017.000014.
ZHANG T W. Fire-extinguishing performance and mechanism study on water mist with potassium additives [D]. Beijing: Beijing Institute of Technology, 2017. DOI: 10.26948/d.cnki.gbjlu.2017.000014.
|
[76] |
夏远辰, 张彬, 王博乔, 等. 超细水雾对氢气-甲烷预混气体爆燃抑制机理的实验研究 [J]. 大连海事大学学报, 2022, 48(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.
XIA Y C, ZHANG B, WANG B Q, et al. Experimental research on suppression mechanism of ultrafine water mist on deflagration of hydrogen-methane premixed gas [J]. Journal of Dalian Maritime University, 2022, 48(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.
|
[77] |
ATKINSON R, BAULCH D L, COX R A, et al. Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: supplement V. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry [J]. Journal of Physical and Chemical Reference Data, 1997, 26(3): 521–1011. DOI: 10.1063/1.556011.
|
[78] |
WILLIAMS B A, L’ESPÉRANCE D M, FLEMING J W. Intermediate species profiles in low-pressure methane/oxygen flames inhibited by 2-H heptafluoropropane: comparison of experimental data with kinetic modeling [J]. Combustion and Flame, 2000, 120(1/2): 160–172. DOI: 10.1016/S0010-2180(99)00081-4.
|
[79] |
XU W, JIANG Y, QIU R, et al. Influence of halon replacements on laminar flame speeds and extinction limits of hydrocarbon flames [J]. Combustion and Flame, 2017, 182: 1–13. DOI: 10.1016/j.combustflame.2017.03.029.
|
[80] |
KATTA V R, TAKAHASHI F, LINTERIS G T. Fire-suppression characteristics of CF3H in a cup burner [J]. Combustion and Flame, 2006, 144(4): 645–661. DOI: 10.1016/j.combustflame.2005.09.006.
|
[81] |
ZHANG X, YANG Z, HUANG X, et al. Combustion enhancement and inhibition of hydrogen-doped methane flame by HFC-227ea [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21704–21714. DOI: 10.1016/j.ijhydene.2021.03.250.
|
[82] |
PAGLIARO J L, LINTERIS G T, SUNDERLAND P B, et al. Combustion inhibition and enhancement of premixed methane–air flames by halon replacements [J]. Combustion and Flame, 2015, 162(1): 41–49. DOI: 10.1016/j.combustflame.2014.07.006.
|
[83] |
左前明, 程卫民, 邹冠贵, 等. 协同增效原理在煤尘抑爆剂中的应用实验 [J]. 重庆大学学报, 2012, 35(1): 105–109,116. DOI: 10.11835/j.issn.1000-582X.2012.01.020.
ZUO Q M, CHENG W M, ZOU G G, et al. Applied experiments on coal dust inhibitor based on the theory of synergistic effect [J]. Journal of Chongqing University, 2012, 35(1): 105–109,116. DOI: 10.11835/j.issn.1000-582X.2012.01.020.
|
[84] |
LI Y C, BI M S, YAN C C, et al. Inerting effect of carbon dioxide on confined hydrogen explosion [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22620–22631. DOI: 10.1016/j.ijhydene.2019.04.181.
|
[85] |
LI J, HUANG H Y, KOBAYASHI N, et al. Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition [J]. Energy, 2017, 126: 796–809. DOI: 10.1016/j.energy.2017.03.085.
|
[86] |
AZATYAN V V, SAIKOVA G R, BALAYAN G V, et al. Dependence of the flammability of hydrogen-air mixtures on the chemical and physical properties of admixtures [J]. Russian Journal of Physical Chemistry A, 2015, 89(3): 369–371. DOI: 10.1134/S0036024415030048.
|
[87] |
王志荣. 受限空间气体爆炸传播及其动力学过程研究 [D]. 南京: 南京工业大学, 2005.
WANG Z R. Study on the dynamics of gas explosion process in confined space [D]. Nanjing: Nanjing Tech University, 2005.
|
[88] |
CAO X Y, WANG Z R, LU Y W, et al. Numerical simulation of methane explosion suppression by ultrafine water mist in a confined space [J]. Tunnelling and Underground Space Technology, 2021, 109: 103777. DOI: 10.1016/j.tust.2020.103777.
|
[89] |
DOUNIA O, VERMOREL O, POINSOT T. Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles [J]. Combustion and Flame, 2018, 193: 313–326. DOI: 10.1016/j.combustflame.2018.03.033.
|