Citation: | ZENG Hao, YUAN Pengcheng, YANG Ting, XU Shenchun, WU Chengqing. Experimental and numerical study of G-UHPC composite slab against contact blast[J]. Explosion And Shock Waves, 2024, 44(6): 063202. doi: 10.11883/bzycj-2023-0432 |
[1] |
DRDLOVÁ M, POPOVIČ M, KOUTNÝ O. Blast resistance of hybrid fibre reinforced concrete containing polyvinyl alcohol, polypropylene and steel fibres with various shape parameters [J]. The European Physical Journal: Special Topics, 2018, 227(1): 111–126. DOI: 10.1140/epjst/e2018-00061-y.
|
[2] |
高海莹, 刘中宪, 杨烨凯, 等. 泡沫铝防护钢筋混凝土板的抗爆性能 [J]. 爆炸与冲击, 2019, 39(2): 023101. DOI: 10.11883/bzycj-2018-0284.
GAO H Y, LIU Z X, YANG Y K, et al. Blast-resistant performance of aluminum foam-protected reinforced concrete slabs [J]. Explosion and Shock Waves, 2019, 39(2): 023101. DOI: 10.11883/bzycj-2018-0284.
|
[3] |
周颖, 黄广炎, 王涛, 等. 多孔聚氨酯基复合削爆屏障的防护性能 [J]. 爆炸与冲击, 2023, 43(10): 105101. DOI: 10.11883/bzycj-2022-0375.
ZHOU Y, HUANG G Y, WANG T, et al. Blast mitigation performance of porous polyurethane-based composite explosion-proof barrier [J]. Explosion and Shock Waves, 2023, 43(10): 105101. DOI: 10.11883/bzycj-2022-0375.
|
[4] |
ZHANG P W, LI X, WANG Z H, et al. Dynamic blast loading response of sandwich beam with origami-inspired core [J]. Results in Physics, 2018, 10: 946–955. DOI: 10.1016/j.rinp.2018.07.043.
|
[5] |
LIAO Q, YU J T, XIE X X, et al. Experimental study of reinforced UHDC-UHPC panels under close-in blast loading [J]. Journal of Building Engineering, 2022, 46: 103498. DOI: 10.1016/j.jobe.2021.103498.
|
[6] |
张海, 徐慎春, 田慧. 超高性能钢筋混凝土与普通钢筋混凝土柱结构抗爆性能的比较研究 [J]. 混凝土与水泥制品, 2014(7): 44–46. DOI: 10.19761/j.1000-4637.2014.07.012.
ZHANG H, XU S C, TIAN H. Comparative study on antiknock performance of ultra high performance reinforced concrete column and ordinary reinforced concrete column [J]. China Concrete and Cement Products, 2014(7): 44–46. DOI: 10.19761/j.1000-4637.2014.07.012.
|
[7] |
AMBILY P S, RAVISANKAR K, UMARANI C, et al. Development of ultra-high-performance geopolymer concrete [J]. Magazine of Concrete Research, 2014, 66(2): 82–89. DOI: 10.1680/macr.13.00057.
|
[8] |
XU S C, YUAN P C, LIU J, et al. Development and preliminary mix design of ultra-high-performance concrete based on geopolymer [J]. Construction and Building Materials, 2021, 308: 125110. DOI: 10.1016/j.conbuildmat.2021.125110.
|
[9] |
KATHIRVEL P, SREEKUMARAN S. Sustainable development of ultra high performance concrete using geopolymer technology [J]. Journal of Building Engineering, 2021, 39: 102267. DOI: 10.1016/j.jobe.2021.102267.
|
[10] |
KARIMIPOUR A, DE BRITO J. RETRACTED: influence of polypropylene fibres and silica fume on the mechanical and fracture properties of ultra-high-performance geopolymer concrete [J]. Construction and Building Materials, 2021, 283: 122753. DOI: 10.1016/j.conbuildmat.2021.122753.
|
[11] |
张书政, 龚克成. 地聚合物 [J]. 材料科学与工程学报, 2003, 21(3): 430–436. DOI: 10.3969/j.issn.1673-2812.2003.03.030.
ZHANG S Z, GONG K C. Geopolymer [J]. Journal of Materials Science and Engineering, 2003, 21(3): 430–436. DOI: 10.3969/j.issn.1673-2812.2003.03.030.
|
[12] |
MENG Q F, WU C Q, SU Y, et al. Experimental and numerical investigation of blast resistant capacity of high performance geopolymer concrete panels [J]. Composites Part B: Engineering, 2019, 171: 9–19. DOI: 10.1016/j.compositesb.2019.04.010.
|
[13] |
YUAN P C, XU S C, LIU J, et al. Experimental investigation of G-HPC-based sandwich walls incorporated with metallic tube core under contact explosion [J]. Archives of Civil and Mechanical Engineering, 2022, 22(4): 155. DOI: 10.1007/s43452-022-00477-7.
|
[14] |
LIU J, LIU C, XU S C, et al. G-UHPC slabs strengthened with high toughness and lightweight energy absorption materials under contact explosions [J]. Journal of Building Engineering, 2022, 50: 104138. DOI: 10.1016/j.jobe.2022.104138.
|
[15] |
魏广帅, 汪维, 杨建超, 等. POZD涂覆钢板加固钢筋混凝土板抗爆性能研究 [J]. 材料导报, 2023, 37(21): 220300007. DOI: 10.11896/cldb.22030007.
WEI G S, WANG W, YANG J C, et al. Study on explosion resistance of reinforced concrete slab strengthened with POZD coated steel plate [J]. Materials Reports, 2023, 37(21): 220300007. DOI: 10.11896/cldb.22030007.
|
[16] |
周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能 [J]. 复合材料学报, 2020, 37(8): 2005–2014. DOI: 10.13801/j.cnki.fhclxb.20191207.001.
ZHOU H Y, JIA K C, WANG X J, et al. In-plane compression properties of negative Poisson’s ratio sandwich structure filled with foam concrete [J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2005–2014. DOI: 10.13801/j.cnki.fhclxb.20191207.001.
|
[17] |
LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955X06063519.
|
[18] |
HALLQUIST J O. LS-DYNA keyword user’s manual [M]. Livermore: Livermore Software Technology Corporation, 2021.
|
[19] |
LIN X S, ZHANG Y X, HAZELL P J. Modelling the response of reinforced concrete panels under blast loading[J]. Materials & Design (1980–2015), 2014, 56: 620–628. DOI: 10.1016/j.matdes.2013.11.069.
|
[20] |
QI C, REMENNIKOV A, PEI L Z, et al. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations [J]. Composite Structures, 2017, 180: 161–178. DOI: 10.1016/j.compstruct.2017.08.020.
|
[21] |
YAMAGUCHI M, MURAKAMI K, TAKEDA K, et al. Blast resistance of double-layered reinforced concrete slabs composed of precast thin plates [J]. Journal of Advanced Concrete Technology, 2011, 9(2): 177–191. DOI: 10.3151/jact.9.177.
|
[22] |
LI L, ZHANG F, LI J H, et al. Computational analysis of sandwich panels with graded foam cores subjected to combined blast and fragment impact loading [J]. Materials, 2023, 16(12): 4371. DOI: 10.3390/ma16124371.
|
[23] |
SHI Y C, LI Z X, HAO H. A new method for progressive collapse analysis of RC frames under blast loading [J]. Engineering Structures, 2010, 32(6): 1691–1703. DOI: 10.1016/j.engstruct.2010.02.017.
|
[24] |
WU H, LI Y C, FANG Q, et al. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses [J]. Construction and Building Materials, 2019, 208: 506–524. DOI: 10.1016/j.conbuildmat.2019.03.040.
|
[25] |
PENG Y, WU H, FANG Q, et al. Geometrical scaling effect for penetration depth of hard projectiles into concrete targets [J]. International Journal of Impact Engineering, 2018, 120: 46–59. DOI: 10.1016/j.ijimpeng.2018.05.010.
|
[26] |
CUI J, SHI Y C, LI Z X, et al. Failure analysis and damage assessment of RC columns under close-in explosions [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): B4015003. DOI: 10.1061/(ASCE)CF.1943-5509.0000766.
|
[27] |
WANG C Z, WANG H X, SHANKAR K, et al. Dynamic failure behavior of steel wire mesh subjected to medium velocity impact: experiments and simulations [J]. International Journal of Mechanical Sciences, 2022, 216: 106991. DOI: 10.1016/j.ijmecsci.2021.106991.
|
[28] |
BAO Y H, LEW H S, KUNNATH S K. Modeling of reinforced concrete assemblies under column-removal scenario [J]. Journal of Structural Engineering, 2014, 140(1): 04013026. DOI: 10.1061/(ASCE)ST.1943-541X.0000773.
|
[29] |
陈龙明, 李述涛, 陈叶青, 等. 配筋对超高性能混凝土抗爆性能的影响 [J]. 工程力学, 2023, 40(S1): 98–107. DOI: 10.6052/j.issn.1000-4750.2022.06.S042.
CHEN L M, LI S T, CHEN Y Q, et al. Influence of reinforcement diameter and spacing on implosion resistance of ultra-high performance concrete [J]. Engineering Mechanics, 2023, 40(S1): 98–107. DOI: 10.6052/j.issn.1000-4750.2022.06.S042.
|
[30] |
李晓军, 郑全平, 杨益. 钢纤维钢筋混凝土板爆炸局部破坏效应 [J]. 爆炸与冲击, 2009, 29(4): 385–389. DOI: 10.11883/1001-1455(2009)04-0385-05.
LI X J, ZHENG Q P, YANG Y. Local damage effects of steel fiber reinforced concrete plates subjected to contact explosion [J]. Explosion and Shock Waves, 2009, 29(4): 385–389. DOI: 10.11883/1001-1455(2009)04-0385-05.
|
[31] |
ZHU F, CHOU C C, YANG K H. Shock enhancement effect of lightweight composite structures and materials [J]. Composites Part B: Engineering, 2011, 42(5): 1202–1211. DOI: 10.1016/j.compositesb.2011.02.014.
|
[32] |
WU G, JI C, WANG X, et al. Blast response of clay brick masonry unit walls unreinforced and reinforced with polyurea elastomer [J]. Defence Technology, 2022, 18(4): 643–662. DOI: 10.1016/j.dt.2021.03.004.
|