Citation: | FANG Qin, GAO Chu, KONG Xiangzhen, YANG Ya. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅰ): blast resistance mechanism[J]. Explosion And Shock Waves, 2024, 44(11): 111001. doi: 10.11883/bzycj-2023-0459 |
[1] |
方秦, 柳锦春. 地下防护结构 [M]. 北京: 中国水利水电出版社, 2010: 272–277.
|
[2] |
方秦, 杜涛, 彭永, 等. 对遮弹层抗弹体侵彻性能的讨论 [J]. 防护工程, 2014, 36(5): 31–36.
FANG Q, DU T, PENG Y, et al. Discussions on the performance of the overlayers against the penetration of projectile [J]. Protective Engineering, 2014, 36(5): 31–36.
|
[3] |
刘瑞朝, 吴飚, 张晓忠, 等. 高强高含量钢纤维混凝土抗侵彻性能试验研究 [J]. 爆炸与冲击, 2002, 22(4): 368–372.
LIU R C, WU B, ZHANG X Z, et al. Test on resisting projectiles penetration of high strength volume steel fiber concrete [J]. Explosion and Shock Waves, 2002, 22(4): 368–372.
|
[4] |
方秦, 罗曼, 张锦华, 等. 弹体侵彻刚玉块石混凝土复合靶体的数值分析 [J]. 爆炸与冲击, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.
FANG Q, LUO M, ZHANG J H, et al. Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay [J]. Explosion and Shock Waves, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.
|
[5] |
周布奎, 周早生, 唐德高, 等. 刚玉块石粒径对刚玉块石砼抗侵彻性能影响的试验研究 [J]. 爆炸与冲击, 2004, 24(1): 370–375.
ZHOU B K, ZHOU Z S, TANG D G, et al. The experimental study of nubbly corundum’s size affection to characteristics of anti-penetration of nubbly corundum concrete [J]. Explosion and Shock Waves, 2004, 24(1): 370–375.
|
[6] |
周布奎, 唐德高, 周早生, 等. 着靶速度对刚玉块石混凝土抗侵彻性能的影响 [J]. 爆炸与冲击, 2005, 25(1): 59–63. DOI: 10.11883/1001-1455(2005)01-0059-05.
ZHOU B K, TANG D G, ZHOU Z S, et al. Study of influence of hit velocity on the anti-penetration behavior of nubbly corundum concrete [J]. Explosion and Shock Waves, 2005, 25(1): 59–63. DOI: 10.11883/1001-1455(2005)01-0059-05.
|
[7] |
郭虎, 何丽灵, 陈小伟, 等. 球形颗粒遮弹层对高速侵彻弹体的作用机理 [J]. 爆炸与冲击, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.
GUO H, HE L L, CHEN X W, et al. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates [J]. Explosion and Shock Waves, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.
|
[8] |
罗文超, 赵凯, 刘飞, 等. 爆炸荷载下分层防护结构损伤效应的数值模拟 [J]. 防护工程, 2011, 33(5): 41–46.
LUO W C, ZHAO K, LIU F, et al. Numerical simulation of damage effects of multi-layered structures under blast loading [J]. Protective Engineering, 2011, 33(5): 41–46.
|
[9] |
任新见, 张庆明, 刘瑞朝. 成层式结构泡沫空心球分配层抗爆性能试验研究 [J]. 振动与冲击, 2015, 34(21): 100–104. DOI: 10.13465/j.cnki.jvs.2015.21.018.
REN X J, ZHANG Q M, LIU R C. Tests for anti-blast performance of layered structures with hollow foam spheres as distribution layers [J]. Journal of Vibration Shock, 2015, 34(21): 100–104. DOI: 10.13465/j.cnki.jvs.2015.21.018.
|
[10] |
任新见, 张磊. 以泡沫陶瓷空心球为分配层的成层式防护结构抗爆性能实验研究 [J]. 防护工程, 2015, 36(1): 12–16.
REN X J, ZHANG L. Experimental research on protective property of layered structure with hollow ceramics foam spheres as distribution layer [J]. Protective Engineering, 2015, 36(1): 12–16.
|
[11] |
徐畅, 崔传安, 王在晖. 聚氨酯泡沫分配层在成层式防护层中的数值模拟 [J]. 防护工程, 2016, 38(6): 44–47.
XU C, CUI C A, WANG Z H. Numerical simulation of the polyurethane foam distribution layer in the multilayer protective layer [J]. Protective Engineering, 2016, 38(6): 44–47.
|
[12] |
泡沫混凝土规范: JG/T266—2011 [S]. 北京: 中国标准出版社, 2011: 2–11.
|
[13] |
李砚召, 王肖钧, 吴祥云, 等. 分配层分层结构对核爆炸荷载的防护效果试验研究 [J]. 中国科学技术大学学报, 2009, 39(9): 931–935.
LI Y Z, WANG X J, WU X Y, et al. Test study on layered structure`s defense effect of distribution layer against nuclear explosive loadings [J]. Journal of University of Science and Technology of China, 2009, 39(9): 931–935.
|
[14] |
张景飞, 冯明德, 陈金刚. 泡沫混凝土抗爆性能的试验研究 [J]. 混凝土, 2010(10): 10–12. DOI: 10.3969/j.issn.1002-3550.2010.10.004.
ZHANG J F, FENG M D, CHEN J G. Study on the knock characteristic of foam concrete [J]. Concrete, 2010(10): 10–12. DOI: 10.3969/j.issn.1002-3550.2010.10.004.
|
[15] |
高全臣, 吴海燕. 泡沫混凝土复合防护结构的抗爆性能试验研究 [C]//第六届全国工程结构安全防护学术会议. 洛阳, 2007: 114–117.
|
[16] |
杜玉兰, 王代华, 刘殿书, 等. 含泡沫混凝土层复合结构抗爆性能试验研究 [C]//首届全国水工抗震防灾学术会议. 南京, 2006: 80–84.
|
[17] |
KONG X Z, FANG Q, CHEN L, et al. A new material for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
|
[18] |
ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
|
[19] |
WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
|
[20] |
WU C T, WU, Y C, CRAWFORD J E, et al. Three-dimensional concrete impact and penetration simulations using the smoothed particle Galerkin method [J]. International Journal of Impact Engineering, 2017, 106: 1–17. DOI: 10.1016/j.ijimpeng.2017.03.005.
|
[21] |
孔祥振, 方秦. 基于SPH方法对强动载下混凝土结构损伤破坏的数值模拟研究 [J]. 中国科学(物理学 力学 天文学), 2020, 50(2): 21–29. DOI: 10.1360/SSPMA-2019-0186.
KONG X Z, FANG Q. Numerical predictions of failures in concrete structures subjected to intense dynamic loadings using the smooth particle hydrodynamics method [J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(2): 21–29. DOI: 10.1360/SSPMA-2019-0186.
|
[22] |
高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
GAO C, KONG X Z, FANG Q, et al. Numerical investigation on attenuation of stress wave in concrete subjected to explosion [J]. Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
|
[23] |
KULAK R F, BOJANOWSKI C. Modeling of cone penetration test using SPH and MM-ALE Approaches[C]// 8th European LS-DYNA Users Conference. 2011: 1–9.
|
[24] |
陈享. 三维多介质任意拉格朗日欧拉方法的若干问题研究及应用[D]. 北京: 清华大学, 2018: 4–5. DOI: 10.27266/d.cnki.gqhau.2018.000211.
|
[25] |
KURTOLU L. A review of S-ALE solver for blast simulations[C]// 11th European LS-DYNA Conference. Salzburg, 2017: 1–8.
|
[26] |
杨亚, 孔祥振, 方秦, 等. 爆炸荷载下泡沫混凝土分配层最小厚度的计算方法 [J]. 爆炸与冲击, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047.
YANG Y, KONG X Z, FANG Q, et al. A calculation method for the minimum thickness of a foam concrete distribution layer under blast load [J]. Explosion And Shock Waves, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047.
|
[27] |
王代华, 刘殿书, 杜玉兰, 等. 含泡沫吸能层防护结构爆炸能量分布的数值模拟研究 [J]. 爆炸与冲击, 2006, 26(6): 562–567. DOI: 10.11883/1001-1455(2006)06-0562-06.
WANG D H, LIU D S, DU Y L, et al. Numerical simulation of anti-blasting mechanism and energy distribution of composite protective structure with foam concrete [J]. Explosion and Shock Waves, 2006, 26(6): 562–567. DOI: 10.11883/1001-1455(2006)06-0562-06.
|