Citation: | FANG Qin, GAO Chu, KONG Xiangzhen, YANG Ya. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅱ): influence factors and design concept[J]. Explosion And Shock Waves, 2025, 45(1): 011101. doi: 10.11883/bzycj-2023-0463 |
[1] |
方秦, 高矗, 孔祥振, 等. 主体结构荷载可控的新型组合式防护结构(Ⅰ): 抗爆机制 [J]. 爆炸与冲击, 2024, 44(11): 111001. DOI: 10.11883/bzycj-2023-0459.
FANG Q, GAO C, KONG X Z, et al. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅰ): blast resistance mechanism [J]. Explosion and Shock Waves, 2024, 44(11): 111001. DOI: 10.11883/bzycj-2023-0459.
|
[2] |
张博一, 王伟, 周威. 地下防护结构 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2021: 212–218.
|
[3] |
颜海春, 艾德武, 袁正如, 等. 空气隔层成层式结构抗常规武器设计荷载分析 [J]. 地下空间与工程学报, 2012, 8(4): 802–806, 856. DOI: 10.3969/j.issn.1673-0836.2012.04.025.
YAN H C, AI D W, YUAN Z R, et al. On the load analysis of resistance to conventional weapons under the circumstances of air buffer application [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(4): 802–806, 856. DOI: 10.3969/j.issn.1673-0836.2012.04.025.
|
[4] |
颜海春, 方秦, 陈力. 遮弹层震塌碎块对成层式结构顶板的冲击破坏效应 [J]. 解放军理工大学学报(自然科学版), 2008, 9(1): 52–56. DOI: 10.3969/j.issn.1009-3443.2008.01.011.
YAN H C, FANG Q, CHEN L. Damage effect on top plate of layered structure under impact of falling mass from blast layer [J]. Journal of PLA University of Science and Technology, 2008, 9(1): 52–56. DOI: 10.3969/j.issn.1009-3443.2008.01.011.
|
[5] |
ZHANG J X, ZHOU R F, WANG M S, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2018, 122(10): 265–275. DOI: 10.1016/j.ijimpeng.2018.08.016.
|
[6] |
ZHANG J H, CHEN L, WU H, et al. Experimental and mesoscopic investigation of double-layer aluminum foam under impact loading [J]. Composite Structures, 2020, 241(6): 110859. DOI: 10.1016/j.compstruct.2019.04.031.
|
[7] |
ZHANG J H, ZHANG Y D, FAN J Y, et al. Mesoscopic investigation of layered graded metallic foams under dynamic compaction [J]. Advances in Structural Engineering, 2018, 21(14): 2081–2098. DOI: 10.1177/1369433218766941.
|
[8] |
GARDNER N, WANG E H, SHUKLA A. Performance of functionally graded sandwich composite beams under shock wave loading [J]. Composite Structures, 2012, 94(5): 1755–1770. DOI: 10.1016/j.compstruct.2011.12.006.
|
[9] |
WANG E H, GARDNER N, SHUKLA A. The blast resistance of sandwich composites with stepwise graded cores [J]. International Journal of Solids and Structures, 2009, 46(18/19): 3492–3502. DOI: 10.1016/j.ijsolstr.2009.06.004.
|
[10] |
GUPTA N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4/5): 979–982. DOI: 10.1016/j.matlet.2006.06.033.
|
[11] |
ZENG H B, PATTOFATTO S. Impact behaviour of hollow sphere agglomerates with density gradient [J]. International Journal of Mechanical Sciences, 2010, 52(5): 680–688. DOI: 10.1016/j.ijmecsci.2009.11.012.
|
[12] |
郝逸飞, 梁恺康, 杨光照. 一种常温养护保温隔热材料的制备方法: CN114149219B [P]. 2022-04-26.
|
[13] |
NIAN W, SUBRAMANIAM K, ANDREOPOULOS Y. Experimental investigation on blast response of cellular concrete [J]. International Journal of Impact Engineering, 2016, 96: 105–115. DOI: 10.1016/j.ijimpeng.2016.05.021.
|
[14] |
杨亚, 孔祥振, 方秦, 等. 爆炸荷载下泡沫混凝土分配层最小厚度的计算方法 [J]. 爆炸与冲击, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047.
YANG Y, KONG X Z, FANG Q, et al. A calculation method for the minimum thickness of a foam concrete distribution layer under blast load [J]. Explosion And Shock Waves, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047.
|
[15] |
中华人民共和国住房和城乡建设部. 泡沫混凝土规范: JG/T266—2011 [S]. 北京: 中国标准出版社, 2011: 2–11.
|
[16] |
LAINE L, SANDVIK A. Derivation of mechanical properties for sand [C]//4th Asian-Pacific Conference on Shock and Impact Loads on Structures. Singapore, 2001: 1–8.
|