Citation: | ZHANG Haipeng, PAN Zuanfeng, SI Doudou. Numerical simulation on dynamic response of reinforced concrete beams to secondary explosion[J]. Explosion And Shock Waves, 2024, 44(10): 101404. doi: 10.11883/bzycj-2024-0021 |
[1] |
ABEDINI M, MUTALIB A A. Investigation into damage criterion and failure modes of RC structures when subjected to extreme dynamic loads [J]. Archives of Computational Methods in Engineering, 2020, 27(2): 501–515. DOI: 10.1007/s11831-019-09317-z.
|
[2] |
SIELICKI P W, ŚLOSARCZYK A, SZULC D. Concrete slab fragmentation after bullet impact: an experimental study [J]. International Journal of Protective Structures, 2019, 10(3): 380–389. DOI: 10.1177/2041419619854764.
|
[3] |
MAZURKIEWICZ L, MAŁACHOWSKI J, BARANOWSKI P. Optimization of protective panel for critical supporting elements [J]. Composite Structures, 2015, 134: 493–505. DOI: 10.1016/j.compstruct.2015.08.069.
|
[4] |
WOODSON S C, KIGER S A. Stirrup requirements for blast-resistant slabs [J]. Journal of Structural Engineering, 1988, 114(9): 2057–2069. DOI: 10.1061/(ASCE)0733-9445(1988)114:9(2057).
|
[5] |
KYEI C, BRAIMAH A. Effects of transverse reinforcement spacing on the response of reinforced concrete columns subjected to blast loading [J]. Engineering Structures, 2017, 142: 148–164. DOI: 10.1016/j.engstruct.2017.03.044.
|
[6] |
汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科技大学, 2012: 37–57.
WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha: Graduate School of National University of Defense Technology, 2012: 37–57.
|
[7] |
师燕超, 李忠献. 爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式 [J]. 建筑结构学报, 2008, 29(4): 112–117. DOI: 10.3321/j.issn:1000-6869.2008.04.015.
SHI Y C, LI Z X. Dynamic responses and failure modes of RC columns under blast loading [J]. Journal of Building Structures, 2008, 29(4): 112–117. DOI: 10.3321/j.issn:1000-6869.2008.04.015.
|
[8] |
高超, 宗周红, 伍俊. 爆炸荷载下钢筋混凝土框架结构倒塌破坏试验研究 [J]. 土木工程学报, 2013, 46(7): 9–20. DOI: 10.15951/j.tmgcxb.2013.07.012.
GAO C, ZONG Z H, WU J. Experimental study on progressive collapse failure of RC frame structures under blast loading [J]. China Civil Engineering Journal, 2013, 46(7): 9–20. DOI: 10.15951/j.tmgcxb.2013.07.012.
|
[9] |
邓国强, 杨秀敏. 钻地弹重复打击效应现场试验研究 [J]. 防护工程, 2012, 34(5): 1–5.
DENG G Q, YANG X M. Experimental investigation into damage effects of repeated attacks of precision-guided penetration weapons [J]. Protective Engineering, 2012, 34(5): 1–5.
|
[10] |
李恩奇, 何浩东, 蒋鸣, 等. 考虑倒塌因素的建筑物多弹累积毁伤效应分析 [J]. 防护工程, 2013, 35(4): 59–64.
LI E Q, HE H D, JIANG M, et al. Numerical analysis of damage and collapse process of RC frame structures under repeated attacks [J]. Protective Engineering, 2013, 35(4): 59–64.
|
[11] |
章毅, 方秦, 陈力, 等. 多次爆炸荷载作用下梁的抗爆性能分析 [J]. 兵工学报, 2009, 30(S2): 182–187.
ZHANG Y, FANG Q, CHEN L, et al. Blast resistant properties of reinforced concrete and steel beams subjected to multiple blast loads [J]. Acta Armamentarii, 2009, 30(S2): 182–187.
|
[12] |
杨大兴, 马林建, 马淑娜, 等. 常规武器对钢筋混凝土梁二次爆炸效应分析 [J]. 防护工程, 2012, 34(6): 38–41.
YANG D X, MA L J, MA S N, et al. An analysis of the damage effects of a second conventional weapon explosion on reinforced concrete beams [J]. Protective Engineering, 2012, 34(6): 38–41.
|
[13] |
陈昊, 卢浩, 孙善政, 等. 常规武器二次爆炸作用下浅埋钢筋混凝土拱结构破坏规律 [J]. 爆炸与冲击, 2023, 43(8): 085104. DOI: 10.11883/bzycj-2022-0260.
CHEN H, LU H, SUN S Z, et al. Failure law of shallow buried reinforced concrete arch structure under secondary explosion of conventional weapons [J]. Explosion and Shock Waves, 2023, 43(8): 085104. DOI: 10.11883/bzycj-2022-0260.
|
[14] |
WILLIAMS G D, WILLIAMSON E B. Response of reinforced concrete bridge columns subjected to blast loads [J]. Journal of Structural Engineering, 2011, 137(9): 903–913. DOI: 10.1061/(ASCE)ST.1943-541X.0000440.
|
[15] |
SHI Y C, HAO H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
|
[16] |
王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
|
[17] |
WU Y C, CRAWFORD J E. Numerical modeling of concrete using a partially associative plasticity model [J]. Journal of Engineering Mechanics, 2015, 141(12): 04015051. DOI: 10.1061/(ASCE)EM.1943-7889.0000952.
|
[18] |
李猛深, 李杰, 李宏, 等. 爆炸荷载下钢筋混凝土梁的变形和破坏 [J]. 爆炸与冲击, 2015, 35(2): 177–183. DOI: 10.11883/1001-1455(2015)02-0177-07.
LI M S, LI J, LI H, et al. Deformation and failure of reinforced concrete beams under blast loading [J]. Explosion and Shock Waves, 2015, 35(2): 177–183. DOI: 10.11883/1001-1455(2015)02-0177-07.
|
[19] |
MOHAMMED T A. Reinforced concrete structural members under impact loading [D]. Toledo: University of Toledo, 2011.
|
[20] |
KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slab under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
|
[21] |
张学杰. 爆炸荷载作用下FRP加固钢筋混凝土柱动态响应精细化分析及损伤评估方法研究 [D]. 天津: 天津大学, 2020: 80–90.
ZHANG X J. Research on methods for refined dynamic response analysis and damage assessment of FRP strengthened RC columns subjected to blast loading [D]. Tianjin: Tianjin University, 2020: 80–90.
|
[22] |
Livermore Software Technology Corporation. Keyword user’s manua: l volume II: material models: LS-DYNA R11 [R]. California: Livermore Software Technology Corporation, 2010.
|
[23] |
陈旭光. 建筑物在侵爆作用下的累积毁伤评估 [D]. 长沙: 国防科技大学, 2019: 51–83.
CHEN X G. Cumulative damage assessment of buildings under penetration and explosion [D]. Changsha: National University of Defense Technology, 2019: 51–83.
|
[24] |
Federal Emergency Management Agency. Reference manual to mitigate potential terrorist attacks against buildings: FEMA-426 [R]. Washington: U. S. Department of Homeland Security, 2011.
|
[25] |
Federal Emergency Management Agency. Risk assessment: FEMA-452 [R]. Washington: U. S. Department of Homeland Security, 2005.
|
[26] |
KELLIHER D, SUTTON-SWABY K. Stochastic representation of blast load damage in a reinforced concrete building [J]. Structural Safety, 2012, 34(1): 407–417. DOI: 10.1016/j.strusafe.2011.08.001.
|
[27] |
CAMPIDELLI M, TAIT M J, EL-DAKHAKHNI W W, et al. Numerical strategies for damage assessment of reinforced concrete block walls subjected to blast risk [J]. Engineering Structures, 2016, 127: 559–582. DOI: 10.1016/j.engstruct.2016.08.032.
|
[28] |
ALMUSTAFA M K, NEHDI M L. Novel hybrid machine learning approach for predicting structural response of RC beams under blast loading [J]. Structures, 2022, 39: 1092–1106. DOI: 10.1016/j.istruc.2022.04.007.
|
[29] |
US Army Corps of Engineers. Structures to resist the effects of accidental explosions: TM5-1300 [S]. Washington: Departments of the Army, the Navy, and the Air Force, 1990.
|
[30] |
US Department of Defense. Structures to resist the effects of accidental explosions: UFC 3-340-02 [R]. Washington: The US Department of the Army, 2008.
|
[31] |
中国工程建设标准化协会. 民用建筑防爆设计标准: T/CECS 736-2020 [S]. 北京: 中国建筑工业出版社, 2020.
China Association for Engineering Construction Standardization. Standard for blast protection design of civil buildings: T/CECS 736-2020 [S]. Beijing: China Architecture & Building Press, 2020.
|