Citation: | SHI Benjun, LI Jie, XU Xiaohui, XU Tianhan, GUO Wei, LI Xiaochen, LI Chao, LI Gan. Optimization of detonation parameters for multi-point aggregated explosion effects in concrete[J]. Explosion And Shock Waves, 2025, 45(1): 015201. doi: 10.11883/bzycj-2024-0023 |
[1] |
邓国强, 周早生, 郑全平. 钻地弹爆炸聚集效应研究现状及展望 [J]. 解放军理工大学学报(自然科学版), 2002, 3(3): 45–49. DOI: 10.3969/j.issn.1009-3443.2002.03.012.
DENG G Q, ZHOU Z S, ZHENG Q P. Study status quo and development of aggregated effect of multiple earth penetrator bursts detonated simultaneously [J]. Journal of the PLA University of Science and Technology, 2002, 3(3): 45–49. DOI: 10.3969/j.issn.1009-3443.2002.03.012.
|
[2] |
LENG Z D, SUN J S, LU W B, et al. Mechanism of the in-hole detonation wave interactions in dual initiation with electronic detonators in bench blasting operation [J]. Computers and Geotechnics, 2021, 129: 103873. DOI: 10.1016/j.compgeo.2020.103873.
|
[3] |
LENG Z D, FAN Y, GAO Q D, et al. Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine [J]. International Journal of Mining Science and Technology, 2020, 30(3): 373–380. DOI: 10.1016/j.ijmst.2020.03.010.
|
[4] |
GAO Q D, LU W B, YAN P, et al. Effect of initiation location on distribution and utilization of explosion energy during rock blasting [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3433–3447. DOI: 10.1007/s10064-018-1296-4.
|
[5] |
PHILLIPS J S, BRATTON J L. ground shock analysis of the multiple burst experiments: ADA 088510 [R]. Springfield: NITS, 1978.
|
[6] |
RUETENIK J R, HOBBS N P, SMILEY R F. Calculation of multiple burst interactions for six simultaneous explosions of 120 Ton ANFO charges: ADA 091978 [R]. Springfield: NITS, 1979.
|
[7] |
HU H W, SONG P, GUO S F, et al. Shock wave and bubble characteristics of underwater array explosion of charges [J]. Defence Technology, 2022, 18(8): 1445–1453. DOI: 10.1016/J.DT.2021.05.020.
|
[8] |
IZUMI K, ASO S, NISHIDA M. Experimental and computational studies focusing processes of shock waves reflected from parabolic reflectors [J]. Shock Waves, 1994, 3(3): 213–222. DOI: 10.1007/BF01414715.
|
[9] |
KISHIGE H, TESHIMA K, NISHIDA M. Focusing of shock waves reflected from an axisymmetrically parabolic wall [C]. Proceedings of the 18th International Symposium on Shock Waves. Sendai: Springer, 1992: 341–345. DOI: 10.1007/978-3-642-77648-9_50.
|
[10] |
QIU P, YUE Z W, ZHANG S C, et al. An in situ simultaneous measurement system combining photoelasticity and caustics methods for blast-induced dynamic fracture [J]. Review of Scientific Instruments, 2017, 88(11): 115113. DOI: 10.1063/1.4994811.
|
[11] |
李旭东, 刘凯欣, 张光升, 等. 冲击波在水泥砂浆板中的聚集效应 [J]. 清华大学学报(自然科学版), 2008, 48(8): 1272–1275. DOI: 10.16511/j.cnki.qhdxxb.2008.08.004.
LI X D, LIU K X, ZHANG G S, et al. Focusing of shock waves in cement mortar plates [J]. Journal of Tsinghua University (Science & Technology), 2008, 48(8): 1272–1275. DOI: 10.16511/j.cnki.qhdxxb.2008.08.004.
|
[12] |
LIN S J, WANG J X, LIU L T, et al. Research on damage effect of underwater multipoint synchronous explosion shock waves on air-backed clamped circular plate [J]. Ocean Engineering, 2021, 240: 109985. DOI: 10.1016/j.oceaneng.2021.109985.
|
[13] |
KIM H D, KWEON Y H, SETOGUCHI T, et al. A study on the focusing phenomenon of a weak shock wave [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2003, 217(11): 1209–1220. DOI: 10.1243/095440603771665241.
|
[14] |
LIANG S M, TSAI C J, WU L N. Efficient, robust second-order total variation diminishing scheme [J]. AIAA Journal, 1996, 34(1): 193–195. DOI: 10.2514/3.13042.
|
[15] |
LIANG S M, WU L N, HSU R L. Numerical investigation of axisymmetric shock wave focusing over paraboloidal reflectors [J]. Shock Waves, 1999, 9(6): 367–379. DOI: 10.1007/S001930050167.
|
[16] |
QIU S, ELIASSON V. Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves [J]. Shock Waves, 2016, 26(3): 287–297. DOI: 10.1007/s00193-015-0567-2.
|
[17] |
刘玲, 袁俊明, 刘玉存, 等. 大型商场多点爆炸恐怖袭击事故数值模拟 [C]//中国化学会第29届学术年会摘要集: 第29分会: 公共安全化学. 北京: 中国化学会, 2014.
|
[18] |
邓国强, 龙汗, 周早生, 等. 钻地弹砂土中聚集爆炸地冲击试验与预测 [J]. 防护工程, 2001, 23(3): 24–28.
|
[19] |
叶海旺, 石文杰, 王二猛, 等. 金堆城露天矿生产爆破合理微差时间的探讨 [J]. 爆破, 2010, 27(1): 96–98. DOI: 10.3963/j.issn.1001-487X.2010.01.026.
YE H W, SHI W J, WANG E M, et al. Research of reasonable delay intervals in Jinduicheng open-pit mine [J]. Blasting, 2010, 27(1): 96–98. DOI: 10.3963/j.issn.1001-487X.2010.01.026.
|
[20] |
顾强, 张世豪, 安晓红, 等. 基于灰色理论的两点爆炸起爆参数优化设计 [J]. 爆炸与冲击, 2015, 35(3): 359–365. DOI: 10.11883/1001-1455(2015)03-0359-07.
GU Q, ZHANG S H, AN X H, et al. Optimization design for priming parameters of two-point explosion based on gray theory [J]. Explosion and Shock Waves, 2015, 35(3): 359–365. DOI: 10.11883/1001-1455(2015)03-0359-07.
|
[21] |
Century Dynamics Inc. Ansys/Autodyn Version 11.0: user documentation [Z]. Pennsylvania, USA: Century Dynamics Inc., 2007: 89–112.
|
[22] |
LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. The Physics of Fluids, 1980, 23(12): 2362–2372. DOI: 10.1063/1.862940.
|
[23] |
MU C M, ZHOU H, MA H F. Prediction method for ground shock parameters of explosion in concrete [J]. Construction and Building Materials, 2021, 291: 123372. DOI: 10.1016/J.CONBUILDMAT.2021.123372.
|
[24] |
OSEI F B, DUKER A A, STEIN A. Bayesian structured additive regression modeling of epidemic data: application to cholera [J]. BMC Medical Research Methodology, 2012, 12(1): 118. DOI: 10.1186/1471-2288-12-118.
|
[25] |
LI F G, LUAN P X. ARMA model for predicting the number of new outbreaks of Newcastle disease during the month [C]. //2011 IEEE International Conference on Computer Science and Automation Engineering. Shanghai, China: IEEE, 2011: 660–663. DOI: 10.1109/CSAE.2011.5952933.
|
[26] |
KOROSTIL I A, PETERS G W, CORNEBISE J, et al. Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus [J]. Statistics in Medicine, 2013, 32(11): 1917–1953. DOI: 10.1002/sim.5590.
|
[27] |
ROBERTS M G, LAWSON J R, GEMMELL M A. Population dynamics in echinococcosis and cysticercosis: mathematical model of the life-cycles of Taenia hydatigena and T. ovis [J]. Parasitology, 1987, 94(1): 181–197. DOI: 10.1017/S0031182000053555.
|
[28] |
HUANG J C. Application of grey system theory in telecare [J]. Computers in Biology and Medicine, 2011, 41(5): 302–306. DOI: 10.1016/j.compbiomed.2011.03.007.
|
[29] |
LEE Y S, TONG L I. Forecasting energy consumption using a grey model improved by incorporating genetic programming [J]. Energy Conversion and Management, 2011, 52(1): 147–152. DOI: 10.1016/j.enconman.2010.06.053.
|
[30] |
王莹, 肖巍, 姚熊亮, 等. 水下爆炸冲击波载荷作用下冰层破碎特性及其影响因素 [J]. 爆炸与冲击, 2019, 39(7): 073103. DOI: 10.11883/bzycj-2018-0141.
WANG Y, XIAO W, YAO X L, et al. Fragmentation of ice cover subjected to underwater explosion shock wave load and its influence factors [J]. Explosion and Shock Waves, 2019, 39(7): 073103. DOI: 10.11883/bzycj-2018-0141.
|
[31] |
吕锋. 灰色系统关联度之分辨系数的研究 [J]. 系统工程理论与实践, 1997, 17(6): 49–54. DOI: 10.3321/j.issn:1000-6788.1997.06.011.
LÜ F. Research on the identification coefficient of relational grade for grey system [J]. Systems Engineering: Theory & Practice, 1997, 17(6): 49–54. DOI: 10.3321/j.issn:1000-6788.1997.06.011.
|