Citation: | CHU Huaibao, CHEN Luyang, YANG Xiaolin, WANG Donghui, WEI Haixia, SUN Bo. Experimental study on impact failure law of water-saturated granite with initial damage[J]. Explosion And Shock Waves, 2025, 45(1): 013101. doi: 10.11883/bzycj-2024-0036 |
[1] |
李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索 [J]. 中国有色金属学报, 2017, 27(6): 1236–1262. DOI: 10.19476/j.ysxb.1004.0609.2017.06.021.
LI X B, ZHOU J, WANG S F, et al. Review and practice of deep mining for solid mineral resources [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1236–1262. DOI: 10.19476/j.ysxb.1004.0609.2017.06.021.
|
[2] |
薛永明, 单启伟, 戴兵, 等. 不同损伤程度花岗岩在冲击荷载作用下的动态力学特性 [J]. 有色金属工程, 2020, 10(3): 54–61. DOI: 10.3969/j.issn.2095-1744.2020.03.010.
XUE Y M, SHAN Q W, DAI B, et al. Dynamic mechanical properties of granite with different damage degrees under impact loading [J]. Nonferrous Metals Engineering, 2020, 10(3): 54–61. DOI: 10.3969/j.issn.2095-1744.2020.03.010.
|
[3] |
李地元, 朱泉企, 李夕兵. 孔洞形状对大理岩渐进破坏力学特性影响研究 [J]. 地下空间与工程学报, 2018, 14(1): 58–66.
LI D Y, ZHU Q Q, LI X B. Research on the effect of cavity shapes for the progressive failure and mechanical behavior of marble [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 58–66.
|
[4] |
朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究 [J]. 岩土工程学报, 2013, 35(3): 531–539.
ZHU J J, LI X B, GONG F Q, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531–539.
|
[5] |
王志亮, 杨辉, 田诺成. 单轴循环冲击下花岗岩力学特性与损伤演化机理 [J]. 哈尔滨工业大学学报, 2020, 52(2): 59–66. DOI: 10.11918/201811085.
WANG Z L, YANG H, TIAN N C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impact [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 59–66. DOI: 10.11918/201811085.
|
[6] |
柴耀光, 刘连生, 曾鹏, 等. 高应变率下含水红砂岩爆破损伤演化模型研究 [J]. 工程爆破, 2022, 28(5): 23–32. DOI: 10.19931/j.EB.20210192.
CHAI Y G, LIU L S, ZENG P, et al. Research on blasting damage evolution model of water bearing red sandstone under high strain rate [J]. Engineering Blasting, 2022, 28(5): 23–32. DOI: 10.19931/j.EB.20210192.
|
[7] |
王浩宇, 许金余, 刘石. 水-动力耦合作用下红砂岩动态强度及破坏机理 [J]. 空军工程大学学报(自然科学版), 2021, 22(4): 99–103. DOI: 10.3969/j.issn.1009-3516.2021.04.015.
WANG H Y, XU J Y, LIU S. Study of dynamic strength and failure mechanism of red sandstone under condition of hydrodynamic coupling effect [J]. Journal of Air Force Engineering University (Natural Science Edition), 2021, 22(4): 99–103. DOI: 10.3969/j.issn.1009-3516.2021.04.015.
|
[8] |
闻磊, 冯文杰, 李明烨, 等. 应变率对含裂隙红砂岩裂纹扩展模式及破碎特征的影响 [J]. 爆炸与冲击, 2023, 43(11): 113103. DOI: 10.11883/bzycj-2023-0061.
WEN L, FENG W J, LI M Y, et al. Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks [J]. Explosion and Shock Waves, 2023, 43(11): 113103. DOI: 10.11883/bzycj-2023-0061.
|
[9] |
周磊, 姜亚成, 朱哲明, 等. 动载荷作用下裂隙岩体的止裂机理分析 [J]. 爆炸与冲击, 2021, 41(5): 053102. DOI: 10.11883/bzycj-2020-0125.
ZHOU L, JIANG Y C, ZHU Z M, et al. Mechanism study of preventing crack propagation of fractured rock under dynamic loads [J]. Explosion and Shock Waves, 2021, 41(5): 053102. DOI: 10.11883/bzycj-2020-0125.
|
[10] |
王璐, 王志亮, 石高扬, 等. 热处理花岗岩循环冲击下断口形貌研究 [J]. 水利水运工程学报, 2018(5): 69–75. DOI: 10.16198/j.cnki.1009-640x.2018.05.010.
WANG L, WANG Z L, SHI G Y, et al. Fractography study of heat-treated granite under action of cyclic impact loading [J]. Hydro-Science and Engineering, 2018(5): 69–75. DOI: 10.16198/j.cnki.1009-640x.2018.05.010.
|
[11] |
武仁杰, 李海波. SHPB冲击作用下层状千枚岩多尺度破坏机理研究 [J]. 爆炸与冲击, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.
WU R J, LI H B. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading [J]. Explosion and Shock Waves, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.
|
[12] |
陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口细–微观试验研究 [J]. 岩石力学与工程学报, 2019, 38(11): 2172–2181. DOI: 10.13722/j.cnki.jrme.2019.0185.
TAO M, WANG J, LI Z W, et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2172–2181. DOI: 10.13722/j.cnki.jrme.2019.0185.
|
[13] |
LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
|
[14] |
左婧, 徐卫亚, 王环玲, 等. 岩石电镜扫描图像的分形特征研究 [J]. 三峡大学学报(自然科学版), 2014, 36(2): 72–76. DOI: 10.13393/j.cnki.issn.1672-948x.2014.02.016.
ZUO J, XU W Y, WANG H L, et al. Fractal analysis of SEM image for rocks [J]. Journal of China Three Gorges University (Natural Sciences), 2014, 36(2): 72–76. DOI: 10.13393/j.cnki.issn.1672-948x.2014.02.016.
|
[15] |
谭赢, 刘希灵, 赵宇喆. 基于巴西劈裂试验的岩石声发射特性及断口特征分析 [J]. 实验力学, 2021, 36(2): 241–249. DOI: 10.7520/1001-4888-20-032.
TAN Y, LIU X L, ZHAO Y Z. Acoustic emission parameter characteristics and fracture morphology analysis of rocks based on Brazilian splitting test [J]. Journal of Experimental Mechanics, 2021, 36(2): 241–249. DOI: 10.7520/1001-4888-20-032.
|
[16] |
中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013 [S]. 北京: 中国计划出版社, 2013.
|
[17] |
张文达. 花岗岩高温酸性环境水-岩作用特征及岩体劣化机制 [D]. 成都: 西南交通大学, 2021: 18–31. DOI: 10.27414/d.cnki.gxnju.2021.001367.
ZHANG W D. Water-rock interaction characteristics and rock mass degradation mechanism of granite in high temperature and acid environment [D]. Chengdu: Southwest Jiaotong University, 2021: 18–31. DOI: 10.27414/d.cnki.gxnju.2021.001367.
|
[18] |
吴秋红, 夏宇浩, 赵延林, 等. 基于DIC及CPG技术的热冷循环后花岗岩I型断裂特性研究 [J/OL]. 煤炭学报[2024-02-28]. https://doi.org/10.13225/j.cnki.jccs.2023.0974.
WU Q H, XIA Y H, ZHAO Y L, et al. An integrated DIC and CPG investigation of the model-Ⅰ fracture features for granites after cyclic heating-cooling treatments [J/OL]. Journal of China Coal Society[2024-02-28]. https://doi.org/10.13225/j.cnki.jccs.2023.0974.
|
[19] |
李夕兵, 宫凤强, 高科, 等. 一维动静组合加载下岩石冲击破坏试验研究 [J]. 岩石力学与工程学报, 2010, 29(2): 251–260.
LI X B, GONG F Q, GAO K, et al. Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 251–260.
|
[20] |
金解放, 李夕兵, 常军然, 等. 循环冲击作用下岩石应力应变曲线及应力波特性 [J]. 爆炸与冲击, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
JIN J F, LI X B, CHANG J R, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings [J]. Explosion and Shock Waves, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
|
[21] |
纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征 [J]. 振动与冲击, 2020, 39(13): 176–183, 214. DOI: 10.13465/j.cnki.jvs.2020.13.026.
JI J J, LI H T, WU F M, et al. Fractal characteristics of rock fragmentation under impact load [J]. Journal of Vibration and Shock, 2020, 39(13): 176–183, 214. DOI: 10.13465/j.cnki.jvs.2020.13.026.
|
[22] |
李乐, 王成, 张红成, 等. 冲击载荷下砂岩的动态力学特性及破坏机制 [J]. 煤炭工程, 2023, 55(9): 140–145. DOI: 10.11799/ce202309024.
LI L, WANG C, ZHANG H C, et al. Dynamic mechanical properties and failure mechanism of sandstone under impact loads [J]. Coal Engineering, 2023, 55(9): 140–145. DOI: 10.11799/ce202309024.
|
[23] |
杨军, 金乾坤, 黄风雷. 岩石爆破理论模型及数值计算 [M]. 北京: 科学出版社, 1999.
YANG J, JIN Q K, HUANG F L. Theoretical model and numerical calculation of rock blasting [M]. Beijing: Science Press, 1999.
|
[24] |
王春, 熊宏威, 舒荣华, 等. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征 [J]. 中国有色金属学报, 2022, 32(9): 2801–2818. DOI: 10.11817/j.ysxb.1004.0609.2022-36737.
WANG C, XIONG H W, SHU R H, et al. Dynamic mechanical characteristic and damage-fracture behavior of deep copper-bearing skarn after high temperature treatment [J]. The Chinese Journal of Nonferrous Metals, 2022, 32(9): 2801–2818. DOI: 10.11817/j.ysxb.1004.0609.2022-36737.
|
[25] |
FALCONER K. 分形几何: 数学基础及其应用 [M]. 曾文曲, 译. 北京: 人民邮电出版社, 2007.
FALCONER K. Mathematical foundations and applications [M]. Translated by ZENG W Q. Beijing: Posts & Telecom Press, 2007.
|
[26] |
夏开文, 王峥, 吴帮标, 等. 流固耦合作用下深部岩石动态力学响应研究进展 [J]. 煤炭学报, 2024, 49(1): 454–478. DOI: 10.13225/j.cnki.jccs.2023.1381.
XIA K W, WANG Z, WU B B, et al. Research progress on dynamic response of deep rocks under coupled hydraulic-mechanical loading [J]. Journal of China Coal Society, 2024, 49(1): 454–478. DOI: 10.13225/j.cnki.jccs.2023.1381.
|
[27] |
ZHOU Z L, CAI X, MA D, et al. Water saturation effects on dynamic fracture behavior of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 46–61. DOI: 10.1016/j.ijrmms.2018.12.014.
|
[28] |
周子龙, 蔡鑫, 周静, 等. 不同加载率下水饱和砂岩的力学特性研究 [J]. 岩石力学与工程学报, 2018, 37(S2): 4069–4075. DOI: 10.13722/j.cnki.jrme.2018.0571.
ZHOU Z L, CAI X, ZHOU J, et al. Mechanical properties of saturated sandstone under different loading rates [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4069–4075. DOI: 10.13722/j.cnki.jrme.2018.0571.
|