• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
FAN Shengyang, LI Jianqiao. Dynamic deformation model of thin-walled ellipsoidal shells under impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0062
Citation: FAN Shengyang, LI Jianqiao. Dynamic deformation model of thin-walled ellipsoidal shells under impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0062

Dynamic deformation model of thin-walled ellipsoidal shells under impact loading

doi: 10.11883/bzycj-2024-0062
  • Received Date: 2024-03-06
  • Rev Recd Date: 2024-12-22
  • Available Online: 2024-12-25
  • In order to study the deformation characteristics of thin-walled ellipsoidal shells under localized impact loading, experimental investigations and numerical simulations were conducted. The global deformation characteristics, central dent depth and dent boundary of the recovery ellipsoidal shell impacted by cylindrical projectiles at different velocities were obtained by projectile impact tests on a light gas gun apparatus and three-dimensional digital image correlation (DIC) technology for deformation process record. The simulation analysis focused on the effects of three different curvature radii on the depression depth and the lengths of the major and minor axes of the ellipsoidal shell. The primary dimensionless independent variables on which the dimensionless deformation characteristics depend were determined by means of dimensional analysis. The influence of less significant parameters was reduced through parameter sensitivity analysis. Under the condition of maintaining consistent scaling ratios for material properties, projectile dimensions, and shell thickness, specific response surface function expressions between dimensionless deformation characteristics vs three curvature radii and velocity parameters were derived. A formula for predicting global deformation based on the depth of the depression and the depression boundary was proposed. The established expression can well describe the size effect and has a high prediction accuracy, and can provide reference for the design of impact load protection of large-sized curved thin shells in engineering.
  • loading
  • [1]
    LIM H K, LEE J S. On the structural behavior of ship’s shell structures due to impact loading [J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(1): 103–118. DOI: 10.1016/j.ijnaoe.2017.03.002.
    [2]
    MOHAMMAD Z, GUPTA P K, BAQI A, et al. Ballistic performance of monolithic and double layered thin-metallic hemispherical shells at normal and oblique impact [J]. Thin-Walled Structures, 2021, 159: 107257. DOI: 10.1016/j.tws.2020.107257.
    [3]
    UPDIKE D P, KALNINS A. Axisymmetric behavior of an elastic spherical shell compressed between rigid plates [J]. Journal of Applied Mechanics, 1970, 37(3): 635–640. DOI: 10.1115/1.3408592.
    [4]
    UPDIKE D P. On the large deformation of a rigid-plastic spherical shell compressed by a rigid plate [J]. Journal of Engineering for Industry, 1972, 94(3): 949–955. DOI: 10.1115/1.3428276.
    [5]
    KITCHING R, HOULSTON R, JOHNSON W. A theoretical and experimental study of hemispherical shells subjected to axial loads between flat plates [J]. International Journal of Mechanical Sciences, 1975, 17(11/12): 693–703. DOI: 10.1016/0020-7403(75)90072-7.
    [6]
    GUPTA N K, MOHAMED SHERIFF N, VELMURUGAN R. Experimental and numerical investigations into collapse behaviour of thin spherical shells under drop hammer impact [J]. International Journal of Solids and Structures, 2007, 44(10): 3136–3155. DOI: 10.1016/j.ijsolstr.2006.09.014.
    [7]
    WEN H M. Large plastic deformation of spherical shells under impact by blunt-ended missiles [J]. International Journal of Pressure Vessels and Piping, 1997, 73(2): 147–152. DOI: 10.1016/S0308-0161(97)00043-4.
    [8]
    宁建国, 杨桂通. 球形扁壳在冲击载荷作用下的超临界变形 [J]. 爆炸与冲击, 1992, 12(3): 206–212. DOI: 10.11883/1001-1455(1992)03-0206-7.

    NING J G, YANG G T. Supercritical deformations of shallow spherical shells under impact [J]. Explosion and Shock Waves, 1992, 12(3): 206–212. DOI: 10.11883/1001-1455(1992)03-0206-7.
    [9]
    LI J Q, REN H L, NING J G. Deformation and failure of thin spherical shells under dynamic impact loading: experiment and analytical model [J]. Thin-Walled Structures, 2021, 161: 107403. DOI: 10.1016/j.tws.2020.107403.
    [10]
    ZHENG J, LI K, LIU S, et al. Effect of shape imperfection on the buckling of large-scale thin-walled ellipsoidal head in steel nuclear containment [J]. Thin-Walled Structures, 2018, 124: 514–522. DOI: 10.1016/j.tws.2018.01.001.
    [11]
    PALIWAL D N, GUPTA R, JAIN A. Stress analysis of ellipsoidal shell on an elastic foundation [J]. International Journal of Pressure Vessels and Piping, 1993, 56(2): 229–242. DOI: 10.1016/0308-0161(93)90095-B.
    [12]
    PATEL P R, GILL S S. Experiments on the buckling under internal pressure of thin torispherical ends of cylindrical pressure vessels [J]. International Journal of Mechanical Sciences, 1978, 20(3): 159–175. DOI: 10.1016/0020-7403(78)90003-6.
    [13]
    BUSHNELL D. Nonsymmetric buckling of internally pressurized ellipsoidal and torispherical elastic-plastic pressure vessel heads [J]. Journal of Pressure Vessel Technology, 1977, 99(1): 54–63. DOI: 10.1115/1.3454520.
    [14]
    CHAO Y J, SUTTON M A. Stress analysis of ellipsoidal shell with radial nozzle [J]. International Journal of Pressure Vessels and Piping, 1985, 21(2): 89–108. DOI: 10.1016/0308-0161(85)90042-0.
    [15]
    ROSS C T F, HUAT B H, CHEI T B, et al. The buckling of GRP hemi-ellipsoidal dome shells under external hydrostatic pressure [J]. Ocean Engineering, 2003, 30(5): 691–705. DOI: 10.1016/s0029-8018(02)00039-2.
    [16]
    BLACHUT J, JAISWAL O R. On the choice of initial geometric imperfections in externally pressurized shells [J]. Journal of Pressure Vessel Technology, 1999, 121(1): 71–76. DOI: 10.1115/1.2883670.
    [17]
    SMITH P, BŁACHUT J. Buckling of externally pressurized prolate ellipsoidal domes [J]. Journal of Pressure Vessel Technology, 2008, 130(1): 011210. DOI: 10.1115/1.2834457.
    [18]
    LIU L, LI J Q. Dynamic deformation and perforation of ellipsoidal thin shell impacted by flat-nose projectile [J]. Materials, 2022, 15(12): 4124. DOI: 10.3390/ma15124124.
    [19]
    陈旭东, 叶康生. 中厚椭球壳自由振动动力刚度法分析 [J]. 振动与冲击, 2016, 35(6): 85–90. DOI: 10.13465/j.cnki.jvs.2016.06.015.

    CHEN X D, YE K S. Free vibration analysis of moderately thick elliptical shells using the dynamic stiffness method [J]. Journal of Vibration and Shock, 2016, 35(6): 85–90. DOI: 10.13465/j.cnki.jvs.2016.06.015.
    [20]
    MA T B, SHEN Y, NING J G, et al. Analysis on dynamic shear fracture based on a novel damage evolution model [J]. International Journal of Impact Engineering, 2024, 183: 104810. DOI: 10.1016/j.ijimpeng.2023.104810.
    [21]
    陈刚, 陈忠富, 徐伟芳, 等. 45钢的J-C损伤失效参量研究 [J]. 爆炸与冲击, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.

    CHEN G, CHEN Z F, XU W F, et al. Investigation on the J-C ductile fracture parameters of 45 steel [J]. Explosion and Shock Waves, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(7)

    Article Metrics

    Article views (136) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return