Turn off MathJax
Article Contents
YU Runzhou, ZHANG Kun, TANG Wenhui. A dynamic response simulation of aluminum plate target induced by high-altitude nuclear detonation X-ray[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0082
Citation: YU Runzhou, ZHANG Kun, TANG Wenhui. A dynamic response simulation of aluminum plate target induced by high-altitude nuclear detonation X-ray[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0082

A dynamic response simulation of aluminum plate target induced by high-altitude nuclear detonation X-ray

doi: 10.11883/bzycj-2024-0082
  • Received Date: 2024-03-27
  • Rev Recd Date: 2024-05-30
  • Available Online: 2024-05-30
  • When X-rays generated by high-altitude nuclear detonation irradiates on the shell structure of missile, blow-off impulse (BOI) and thermal shock waves generated may produce dynamic response and damage on it. The existing three one-dimensional theoretical models, Whitener, BBAY, and MBBAY, can only provide approximate BOI values and accurate results of peak pressure and other information are inaccessible. Solving this problem requires numerical calculations based on real physical laws. The numerical simulation program TSHOCK3D for X-ray thermal excitation wave is used to calculate the BOI and peak pressure to make a comparative analysis. An aluminum plate with a length and width of 0.4 centimeters and a thickness of 0.1 centimeters is set as the target for X-ray radiation. The range of the working conditions is 0.1−3.0 keV for the Planck's blackbody temperatures and radiant energy flux are in the range of 220−400 J/cm2. The results indicate that the TSHOCK3D can give the results effectively and reliably. The simulation results are consistent with the theoretical models mentioned above. The BOI and peak pressure are approximately linear with the energy flux, while the maximum value exist for different blackbody temperatures.
  • loading
  • [1]
    ZHANG K, TANG W H, FU K K. Modeling of dynamic behavior of carbon fiber-reinforced polymer (CFRP) composite under x-ray radiation [J]. Materials, 2018, 11(1): 143. DOI: 10.3390/ma11010143.
    [2]
    王建国. 高空核爆炸效应参数手册 [M]. 北京: 原子能出版社, 2010: 6–9.
    [3]
    REMO J L, FURNISH M D, LAWRENCE R J. Soft X-ray shock loading and momentum coupling in meteorite and planetary materials [J]. AIP Conference Proceedings, 2012, 1426(1): 879–882. DOI: 10.1063/1.3686418.
    [4]
    REMO J L, FURNISH M D, LAWRENCE R J. Plasma-driven Z-pinch X-ray loading and momentum coupling in meteorite and planetary materials [J]. Journal of Plasma Physics, 2013, 79(2): 121–141. DOI: 10.1017/s0022377812000712.
    [5]
    REMO J L, LAWRENCE R J, JACOBSEN S B, et al. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation [J]. Acta Astronautica, 2016, 129: 384–388. DOI: 10.1016/j.actaastro.2016.09.026.
    [6]
    REMO J L, FURNISH M D. Analysis of Z-pinch shock wave experiments on meteorite and planetary materials [J]. International Journal of Impact Engineering, 2008, 35(12): 1516–1521. DOI: 10.1016/j.ijimpeng.2008.07.075.
    [7]
    LIBERATORE S, GAUTHIER P, WILLIEN J L, et al. First indirect drive inertial confinement fusion campaign at laser megajoule [J]. Physics of Plasmas, 2023, 30(12): 122707. DOI: 10.1063/5.0176446.
    [8]
    HURRICANE O A, PATEL P K, BETTI R, et al. Physics principles of inertial confinement fusion and U. S. program overview [J]. Reviews of Modern Physics, 2023, 95(2): 025005. DOI: 10.1103/RevModPhys.95.025005.
    [9]
    DO A, CASEY D T, CLARK D S, et al. Measurements of improved stability to achieve higher fuel compression in ICF [J]. Physics of Plasmas, 2023, 30(11): 112703. DOI: 10.1063/5.0167424.
    [10]
    LONGLEY R W. Analytical relationships for estimating the effects of X-rays on materials: AFRPL-TR-74-52 [R]. 1974. DOI: 10.21236/ad0786926.
    [11]
    LAWRENCE R J. The equivalence of simple models for radiation-induced impulse [C]// SCHMIDT S C, DICK R D, FORBES J W, et al. Shock Compression of Condensed Matter-1991. Amsterdam: North Holland, 1992: 785–788. DOI: 10.1016/B978-0-444-89732-9.50179-5.
    [12]
    李清源, 王国庆, 吴军, 等. 脉冲电子束产生喷射冲量的实验研究 [J]. 爆炸与冲击, 1991, 11(4): 339–345. DOI: 10.11883/1001-1455(1991)04-0339-7.
    [13]
    LI Q Y, WANG G Q, WU J, et al. Experimental studies of blow-off impulse generated by a pulse electron beam [J]. Explosion and Shock Waves, 1991, 11(4): 339–345.
    [14]
    彭常贤, 胥永亮, 徐建波. 电子束辐照平板靶产生喷射冲量的实验研究 [J]. 高压物理学报, 1994, 8(1): 23–29. DOI: 10.11858/gywlxb.1994.01.004.
    [15]
    PENG C X, XU Y L, XU J B. Experimental studies of the blowoff impulses produced in the flat plate targets bombarded by electron beam [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 23–29.
    [16]
    张朝辉, 张思群, 任晓东, 等. 基于Z箍缩X射线源的热-力学效应实验 [J]. 爆炸与冲击, 2021, 41(9): 094101. DOI: 10.11883/bzycj-2021-0124.

    ZHANG Z H, ZHANG S Q, REN X D, et al. Experiments for thermomechanical effects based on Z-pinch X-ray sources [J]. Explosion and Shock Waves, 2021, 41(9): 094101. DOI: 10.11883/bzycj-2021-0124.
    [17]
    HUANG X, TANG W H, Jiang B H. A modified anisotropic PUFF equation of state for composite materials [J]. Journal of Composite Materials, 2012, 46(5): 499–506. DOI: 10.1177/0021998311415724.
    [18]
    张昆, 汤文辉, 冉宪文. X射线三维热力学效应模拟软件: CN2016SR110024 [P]. 2016.
    [19]
    WANG D W, GAO Y, WANG S, et al. Study on x-ray induced two-dimensional thermal shock waves in carbon/phenolic [J]. Materials, 2021, 14(13): 3553. DOI: 10.3390/ma14133553.
    [20]
    LIN P, CHEN R H, WANG D W. Studies on the thermodynamic properties of C/ph irradiated by intense electron beams [J]. Coatings, 2022, 12(8): 1128. DOI: 10.3390/coatings12081128.
    [21]
    汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 2版. 北京: 高等教育出版社, 2008.

    TANG W H, ZHANG R Q. Introduction to theory and computation of equations of state [M]. 2nd ed. Beijing: Higher Education Press, 2008.
    [22]
    张昆. 各向异性复合材料的本构关系及其在X射线辐照下动力学响应的三维有限元模拟 [D]. 长沙: 国防科技大学, 2018.

    ZHANG K. Constitutive relationship of anisotropic composites and its application in a FEM simulation of the dynamic response within the X-ray radiation in 3D condition [D]. Changsha: National University of Defense Technology, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (120) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return