Turn off MathJax
Article Contents
ZHAO Jiangping, ZHANG Shuqi, ZHONG Xingrun, YU Kainan. Explosion characteristics of additive manufacturing aluminum and aluminum-silicon alloy powders[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0093
Citation: ZHAO Jiangping, ZHANG Shuqi, ZHONG Xingrun, YU Kainan. Explosion characteristics of additive manufacturing aluminum and aluminum-silicon alloy powders[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0093

Explosion characteristics of additive manufacturing aluminum and aluminum-silicon alloy powders

doi: 10.11883/bzycj-2024-0093
  • Received Date: 2024-04-07
  • Accepted Date: 2024-12-09
  • Rev Recd Date: 2024-10-08
  • Available Online: 2025-01-07
  • Explosion experiments utilizing a 20 L spherical explosion apparatus were conducted to investigate the explosion characteristics of aluminum and aluminum-silicon alloy powders, prevalent in additive manufacturing. The tested samples included Al, Al-12Si, and Al-20Si. Various parameters were measured under different influencing factors, including the lower explosion limit, maximum explosion pressure, maximum pressure rise rate, explosion temperature, and time to reach peak temperature. Thermogravimetric analysis-differential scanning calorimetry was employed to analyze the thermal oxidation properties of the samples. The results indicated that an increase in the silicon content within the alloy corresponded with a lower explosion limit. Conversely, the maximum explosion pressure and peak temperature showed a downward trend. Meanwhile. a reduction in the maximum pressure rise rate was observed. The exothermic amount of the oxidation process reduced, and the oxidation rate slowed down. The concentrations at which the three samples reached the maximum explosion pressure and peak temperature were 300 g/m3 for Al, 750 g/m3 for Al-12Si, and 900 g/m3 for Al-20Si, respectively. When the ignition energy increased, the rate of increase in maximum explosion pressure for the aluminum-silicon alloys was lower than that for aluminum powder. The effect of environmental temperature changes on the lower explosive limit was less significant compared to that of particle size variations. As the environmental temperature increased, the explosion pressure did not show a significant change, while the pressure rise rate increased slightly. X-ray diffraction analysis of the explosion products revealed that, in addition to Al2O3 and Al, the explosion products of the aluminum-silicon alloys also contained SiO2 and Si. This indicates that the Si element in the alloy participated in the explosion reaction. It confirms that the explosion of aluminum-silicon alloy powder is caused by the heating and vaporization of the particles, leading to the formation of a combustible gas composed of gaseous aluminum and silicon, which then combusts with oxygen.
  • loading
  • [1]
    ALAMI A H, OLABI A G, ALASHKAR A, et al. Additive manufacturing in the aerospace and automotive industries: recent trends and role in achieving sustainable development goals [J]. Ain Shams Engineering Journal, 2023, 14(11): 102516. DOI: 10.1016/j.asej.2023.102516.
    [2]
    马如龙, 彭超群, 王日初, 等. 选区激光熔化铝合金的研究进展 [J]. 中国有色金属学报, 2020, 30(12): 2773–2788. DOI: 10.11817/j.ysxb.1004.0609.2020-37780.

    MA R L, PENG C Q, WANG R C, et al. Progress in selective laser melted aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2020, 30(12): 2773–2788. DOI: 10.11817/j.ysxb.1004.0609.2020-37780.
    [3]
    ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of Aluminium alloys: additive Manufacturing of Aluminium alloys using selective laser melting [J]. Progress in Materials Science, 2019, 106: 100578. DOI: 10.1016/j.pmatsci.2019.100578.
    [4]
    CASTELLANOS D, CARRETO-VAZQUEZ V H, MASHUGA C V, et al. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust [J]. Powder Technology, 2014, 254: 331–337. DOI: 10.1016/j.powtec.2013.11.028.
    [5]
    张阳军, 陈英. 金属材料增材制造技术的应用研究进展 [J]. 粉末冶金工业, 2018, 28(1): 63–67. DOI: 10.13228/j.boyuan.issn1006-6543.20170027.

    ZHANG Y J, CHEN Y. Research on the application of metal additive manufacturing technology [J]. Powder Metallurgy Industry, 2018, 28(1): 63–67. DOI: 10.13228/j.boyuan.issn1006-6543.20170027.
    [6]
    JIANG H P, BI M S, LI B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion [J]. Journal of Hazardous Materials, 2019, 361: 273–282. DOI: 10.1016/j.jhazmat.2018.07.045.
    [7]
    LIN S, LIU Z T, QIAN J F, et al. Comparison on the explosivity of coal dust and of its explosion solid residues to assess the severity of re-explosion [J]. Fuel, 2019, 251: 438–446. DOI: 10.1016/j.fuel.2019.04.080.
    [8]
    陈晓坤, 张自军, 王秋红, 等. 20L近球形容器中微米级铝粉的爆炸特性 [J]. 爆炸与冲击, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.

    CHEN X K, ZHANG Z J, WANG Q H, et al. Explosion characteristics of micro-sized aluminum dust in 20 L spherical vessel [J]. Explosion and Shock Waves, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.
    [9]
    REN X F, ZHANG J S. Correlation between particle size distribution and explosion intensity of aluminum powder [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104896. DOI: 10.1016/j.jlp.2022.104896.
    [10]
    KIM W, SAEKI R, UENO Y, et al. Effect of particle size on the minimum ignition energy of aluminum powders [J]. Powder Technology, 2023, 415: 118190. DOI: 10.1016/j.powtec.2022.118190.
    [11]
    文虎, 杨玉峰, 王秋红, 等. 矩形管道中微米级铝粉爆炸实验 [J]. 爆炸与冲击, 2018, 38(5): 993–998. DOI: 10.11883/bzycj-2016-0003.

    WEN H, YANG Y F, WANG Q H, et al. Experimental study on micron-sized aluminum dust explosion in a rectangular pipe [J]. Explosion and Shock Waves, 2018, 38(5): 993–998. DOI: 10.11883/bzycj-2016-0003.
    [12]
    ZHANG S L, BI M S, YANG M R, et al. Flame propagation characteristics and explosion behaviors of aluminum dust explosions in a horizontal pipeline [J]. Powder Technology, 2020, 359: 172–180. DOI: 10.1016/j.powtec.2019.10.009.
    [13]
    CHANG P J, MOGI T, DOBASHI R. An investigation on the dust explosion of micron and nano scale aluminium particles [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104437. DOI: 10.1016/j.jlp.2021.104437.
    [14]
    吴建星, 龚友成, 金湘. 环境温度对粉尘爆炸参数的影响 [J]. 工业安全与环保, 2007, 33(11): 32–33. DOI: 10.3969/j.issn.1001-425X.2007.11.014.

    WU J X, GONG Y C, JIN X. Influences of the environment temperature on dust explosion parameters [J]. Industrial Safety and Environmental Protection, 2007, 33(11): 32–33. DOI: 10.3969/j.issn.1001-425X.2007.11.014.
    [15]
    FENG Y C, XIA Z X, HUANG L Y, et al. Effect of ambient temperature on the ignition and combustion process of single aluminium particles [J]. Energy, 2018, 162: 618–629. DOI: 10.1016/j.energy.2018.08.066.
    [16]
    王秋红, 闵锐, 孙艺林, 等. 抛光工艺中镁铝合金粉燃爆参数分析 [J]. 中南大学学报(自然科学版), 2020, 51(5): 1211–1220. DOI: 10.11817/j.issn.1672-7207.2020.05.005.

    WANG Q H, MIN R, SUN Y L, et al. Analysis of magnesium-aluminum alloy powder burning explosion parameters in the polishing process [J]. Journal of Central South University (Science and Technology), 2020, 51(5): 1211–1220. DOI: 10.11817/j.issn.1672-7207.2020.05.005.
    [17]
    LUO J W, WANG Q H, CHUNG Y H, et al. Hazard evaluation, explosion risk, and thermal behaviour of magnesium-aluminium alloys during the polishing process by using a 20-L apparatus, MIEA, and TGA [J]. Process Safety and Environmental Protection, 2021, 153: 268–277. DOI: 10.1016/j.psep.2021.07.014.
    [18]
    马万太, 蒋云泽, 史志翔, 等. 高硅铝合金粉尘云燃爆特性研究 [J]. 工业安全与环保, 2023, 49(3): 76–80. DOI: 10.3969/j.issn.1001-425X.2023.03.018.

    MA W T, JIANG Y Z, SHI Z X, et al. Study on the dust clouds ignition and explosion characteristics of aluminum alloy with higher silicon contents [J]. Industrial Safety and Environmental Protection, 2023, 49(3): 76–80. DOI: 10.3969/j.issn.1001-425X.2023.03.018.
    [19]
    VAZ N G, SHANCITA I, PANTOYA M L. Thermal oxidation analysis of aerosol synthesized fuel particles composed of Al versus Al-Si [J]. Powder Technology, 2021, 382: 532–540. DOI: 10.1016/j.powtec.2021.01.018.
    [20]
    MILLOGO M, BERNARD S, GILLARD P. Combustion characteristics of pure aluminum and aluminum alloys powders [J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104270. DOI: 10.1016/j.jlp.2020.104270.
    [21]
    BERNARD S, GILLARD P, FRASCATI F. Ignition and explosibility of aluminium alloys used in additive layer manufacturing [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 888–895. DOI: 10.1016/j.jlp.2017.04.014.
    [22]
    孙思衡, 孙艳, 贾存锋, 等. 增材制造用金属粉末爆炸敏感性研究 [J]. 粉末冶金技术, 2020, 38(4): 249–256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009.

    SUN S H, SUN Y, JIA C F, et al. Study on the explosion sensitivity of metal powders used in additive manufacturing [J]. Powder Metallurgy Technology, 2020, 38(4): 249–256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009.
    [23]
    CASTELLANOS D, BAGARIA P, MASHUGA V C. Effect of particle size polydispersity on dust cloud minimum ignition energy [J]. Powder Technology, 2020, 367: 782–787. DOI: 10.1016/j.powtec.2020.04.037.
    [24]
    ASTM International. ASTM E1515-14 Standard test method for minimum explosible concentration of combustible dusts[S]. West Conshohocken: ASTM International, 2014: 1–6. DOI: 10.1520/E1515-14.
    [25]
    赵江平, 王振成. 热爆炸理论在粉尘爆炸机理研究中的应用 [J]. 中国安全科学学报, 2004, 14(5): 80–83. DOI: 10.16265/j.cnki.issn1003-3033.2004.05.020.

    ZHAO J P, WANG Z C. Application of heat explosion theory to dust explosion mechanism research [J]. China Safety Science Journal, 2004, 14(5): 80–83. DOI: 10.16265/j.cnki.issn1003-3033.2004.05.020.
    [26]
    KUAI N S, HUANG W X, DU B, et al. Experiment-based investigations on the effect of ignition energy on dust explosion behaviors [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 869–877. DOI: 10.1016/j.jlp.2013.03.005.
    [27]
    KIM T S, LEE B T, LEE C R, et al. Microstructure of rapidly solidified Al–20Si alloy powders [J]. Materials Science and Engineering: A, 2001, 304/305/306: 617–620. DOI: 10.1016/S0921-5093(00)01546-X.
    [28]
    ZHOU Z Q, CHAI L J, ZHANG Y L, et al. Experimental study on oxidation and shell-breaking characteristics of individual aluminum particles at high temperature [J]. Powder Technology, 2024, 431: 119087. DOI: 10.1016/j.powtec.2023.119087.
    [29]
    DEAL B E, GROVE A S. General relationship for the thermal oxidation of silicon [J]. Journal of Applied Physics, 1965, 36(12): 3770–3778. DOI: 10.1063/1.1713945.
    [30]
    曹卫国. 褐煤粉尘爆炸特性实验及机理研究 [D]. 南京: 南京理工大学, 2016. DOI: 10.7666/d.Y3192770.

    CAO W G. Experimental and mechanism study on explosion characteristic of lignite coal dust [D]. Nanjing: Nanjing University of Science and Technology, 2016. DOI: 10.7666/d.Y3192770.
    [31]
    BALLANTYNE A, MOSS J B. Fine wire thermocouple measurements of fluctuating temperature [J]. Combustion Science and Technology, 1977, 17(1/2): 63–72. DOI: 10.1080/00102209708946813.
    [32]
    MA X S, MENG X B, LI Z Y, et al. Study of the influence of melamine polyphosphate and aluminum hydroxide on the flame propagation and explosion overpressure of aluminum magnesium alloy dust [J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104291. DOI: 10.1016/j.jlp.2020.104291.
    [33]
    ZHANG T J, ZHANG Z L, ZHU C C, et al. Inhibition effects of aluminum dust explosions by various kinds of ammonium polyphosphate [J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105083. DOI: 10.1016/j.jlp.2023.105083.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (19) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return