Turn off MathJax
Article Contents
KANG Yue, MA Tian, WANG Junlong, ZHANG Yizhi, ZHANG Wenbo, HAN Xiao, LI Zhijie. Numerical simulation study on the dynamic evolution characteristics of muzzle shock waves at different altitudes[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0108
Citation: KANG Yue, MA Tian, WANG Junlong, ZHANG Yizhi, ZHANG Wenbo, HAN Xiao, LI Zhijie. Numerical simulation study on the dynamic evolution characteristics of muzzle shock waves at different altitudes[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0108

Numerical simulation study on the dynamic evolution characteristics of muzzle shock waves at different altitudes

doi: 10.11883/bzycj-2024-0108
  • Received Date: 2024-04-15
  • Rev Recd Date: 2024-10-15
  • Available Online: 2024-10-16
  • Based on the Euler-Lagrangian coupling method (CEL), a fluid-solid coupling model of gunpowder gas-barrel/cannonball-air is established. Numerical simulations are carried out on the launching process of large-caliber artillery shells in low altitude (altitude 0 m), medium altitude (altitude 1000 m), sub-high altitude (altitude 3000 m) and high altitude (altitude 5000 m) environments, and the comparative studies are conducted on the influence mechanism of altitudes on the dynamic evolution characteristics of muzzle shock waves. The simulation results show that the dynamic evolution process of the muzzle shock wave has significant direction dependence. The peak pressure of the muzzle shock wave will decrease as the altitude increases (namely the ambient pressure decreases), and the decrease of peak pressure is approximately linear to the change of ambient pressure . Increasing altitude will reduce the pressure peak of the muzzle shock wave for the same position (same distance and direction). The lateral muzzle shock wave, formed at the muzzle brake, dominates the pressure peak in the typical operating zone of the artillery operators (3–5 m behind the muzzle). The pressure peak value and effective action time at different altitudes can cause damage to the hearing organs, and induce the threat to the non-hearing organs. Therefore, the protection capabilities of artillery operators’ equipment is urgently needed to be improved, providing the effective protection for the important organs, such as ears, eyes, lungs and brains.
  • loading
  • [1]
    孙全兆, 范社卫, 王殿荣, 等. 某突击炮炮口流场数值模拟研究 [J]. 弹道学报, 2019, 31(4): 63–67. DOI: 10.12115/j.issn.1004-499X(2019)04-011.

    SUN Q Z, FAN S W, WANG D R, et al. Numerical study of muzzle flow field of assault gun [J]. Journal of Ballistics, 2019, 31(4): 63–67. DOI: 10.12115/j.issn.1004-499X(2019)04-011.
    [2]
    郭则庆. 膛口流场动力学机理数值研究 [D]. 南京: 南京理工大学, 2012. DOI: 10.7666/d.Y2275207.

    GUO Z Q. Numerical investigations on the dynamics mechanism of muzzle flow [D]. Nanjing: Nanjing University of Science and Technology, 2012. DOI: 10.7666/d.Y2275207.
    [3]
    HUGONIOT M. On the diversified movement of a gas compressed in a reservoir which empties freely into the atmosphere [J]. Comptes Rendue, 1886, 1: 103.
    [4]
    CROWLEY A B, SZMELTER J. Computation of muzzle flow fields using unstructured meshes [C]// Proceedings of the 19th International Symposium of Ballistics. Interlaken: Launch Dynamic & Propulsion, 2001: 265–271.
    [5]
    赖富文, 张志杰, 胡桂梅, 等. 某型舰炮炮口冲击波等压场测试方法 [J]. 传感技术学报, 2015, 28(1): 77–80. DOI: 10.3969/j.issn.1004-1699.2015.01.014.

    LAI F W, ZHANG Z J, HU G M, et al. A method to measure muzzle shock wave pressure field for a naval gun [J]. Chinese Journal of Sensors and Actuators, 2015, 28(1): 77–80. DOI: 10.3969/j.issn.1004-1699.2015.01.014.
    [6]
    蒋晟, 阮文俊, 孙雪明, 等. 大口径火炮发射噪声场数值仿真与实验研究 [J]. 火炮发射与控制学报, 2024, 45(1): 113–118. DOI: 10.19323/j.issn.1673-6524.202303027.

    JIANG S, RUAN W J, SUN X M, et al. Numerical simulation and experimental study on noise field of large caliber gun [J]. Journal of Gun Launch & Control, 2024, 45(1): 113–118. DOI: 10.19323/j.issn.1673-6524.202303027.
    [7]
    王加刚, 余永刚, 周良梁. 埋头弹火炮高效低危害炮口制退器的实验研究 [J]. 兵工学报, 2017, 38(5): 1035–1040. DOI: 10.3969/j.issn.1000-1093.2017.05.025.

    WANG J G, YU Y G, ZHOU L L. Experimental study of high efficiency and low hazard muzzle brake for CTA gun [J]. Acta Armamentarii, 2017, 38(5): 1035–1040. DOI: 10.3969/j.issn.1000-1093.2017.05.025.
    [8]
    余海伟, 袁军堂, 汪振华, 等. 新型结构炮口制退器的膛口冲击波数值研究与性能分析 [J]. 高压物理学报, 2020, 34(6): 065102. DOI: 10.11858/gywlxb.20200568.

    YU H W, YUAN J T, WANG Z H, et al. Muzzle blast wave investigation and performance analysis of new-structure muzzle brake based on numerical simulation [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065102. DOI: 10.11858/gywlxb.20200568.
    [9]
    DILLON JR, R, NAGAMATSU H. A parametric study of perforated muzzle brakes [C]//Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Orlando: American Institute of Aeronautics and Astronautics, 1993. DOI: 10.2514/6.1993-3090.
    [10]
    LUO Y, XU D, LI H. Analysis of the dynamic characteristics of the muzzle flow field and investigation of the influence of projectile nose shape [J]. Applied Sciences, 2020, 10(4): 1468. DOI: 10.3390/app10041468.
    [11]
    CARSON R A, SAHNI O. Numerical investigation of propellant leak methods in large-caliber cannons for blast overpressure attenuation [J]. Shock Waves, 2014, 24(6): 625–638. DOI: 10.1007/s00193-014-0522-7.
    [12]
    ZHANG X, YU Y G, ZHANG X W. Numerical simulation and analysis of the 3D transient muzzle flow field of underwater artillery [J]. Ocean Engineering, 2023, 284: 115270. DOI: 10.1016/j.oceaneng.2023.115270.
    [13]
    张旋, 余永刚, 张欣尉. 火炮在不同介质中发射的膛口流场特性分析 [J]. 爆炸与冲击, 2021, 41(10): 103901. DOI: 10.11883/bzycj-2021-0056.

    ZHANG X, YU Y G, ZHANG X W. Analysis of muzzle flow field characteristics of gun fired in different media [J]. Explosion and Shock Waves, 2021, 41(10): 103901. DOI: 10.11883/bzycj-2021-0056.
    [14]
    张京辉, 余永刚. 弹道枪不同水深下全淹没式发射膛口流场的数值分析 [J]. 爆炸与冲击, 2020, 40(10): 104201. DOI: 10.11883/bzycj-2019-0478.

    ZHANG J H, YU Y G. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths [J]. Explosion and Shock Waves, 2020, 40(10): 104201. DOI: 10.11883/bzycj-2019-0478.
    [15]
    LI P F, ZHANG X B. Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion [J]. Defence Technology, 2021, 17(4): 1178–1189. DOI: 10.1016/j.dt.2020.06.019.
    [16]
    QIN Q Y, ZHANG X B. Numerical investigation on combustion in muzzle flows using an inert gas labeling method [J]. International Journal of Heat and Mass Transfer, 2016, 101: 91–103. DOI: 10.1016/j.ijheatmasstransfer.2016.05.009.
    [17]
    李子杰, 王浩. 膛口初始流场对火药燃气射流的影响 [J]. 含能材料, 2017, 25(4): 282–290. DOI: 10.11943/j.issn.1006-9941.2017.04.003.

    LI Z J, WANG H. Effect of precursor flow field of muzzle on the combustion gas jet flow of gun propellant [J]. Chinese Journal of Energetic Materials, 2017, 25(4): 282–290. DOI: 10.11943/j.issn.1006-9941.2017.04.003.
    [18]
    郭则庆, 王杨, 姜孝海, 等. 膛口初始流场对火药燃气流场影响的数值研究 [J]. 兵工学报, 2012, 33(6): 663–668. DOI: 10.3969/j.issn.1000-1093.2012.06.005.

    GUO Z Q, WANG Y, JIANG X H, et al. Numerical study on effects of precursor flow on muzzle propellant flow field [J]. Acta Armamentarii, 2012, 33(6): 663–668. DOI: 10.3969/j.issn.1000-1093.2012.06.005.
    [19]
    杨丽, 徐笑阳. 基于CFD仿真的炮口制退器性能影响因素研究 [J]. 装备环境工程, 2024, 21(3): 1–10. DOI: 10.7643/issn.1672-9242.2024.03.001.

    YANG L, XU X Y. Influencing factors of muzzle brake performance based on CFD simulation [J]. Equipment Environmental Engineering, 2024, 21(3): 1–10. DOI: 10.7643/issn.1672-9242.2024.03.001.
    [20]
    王丹宇, 南风强, 廖昕, 等. 考虑化学反应的大口径火炮炮口流场特性 [J]. 兵工学报, 2021, 42(8): 1624–1630. DOI: 10.3969/j.issn.1000-1093.2021.08.006.

    WANG D Y, NAN F Q, LIAO X, et al. Characteristics of muzzle flow field of large caliber gun considering chemical reaction [J]. Acta Armamentarii, 2021, 42(8): 1624–1630. DOI: 10.3969/j.issn.1000-1093.2021.08.006.
    [21]
    李福龙, 孔德仁, 王良全, 等. 海拔高度对化爆冲击波压力分布规律影响分析 [J]. 兵器装备工程学报, 2024, 45(2): 158–165. DOI: 10.11809/bqzbgcxb2024.02.020.

    LI F L, KONG D R, WANG L Q, et al. Analysis of the effect of altitude on the pressure distribution pattern of chemical explosion shock wave [J]. Journal of Ordnance Equipment Engineering, 2024, 45(2): 158–165. DOI: 10.11809/bqzbgcxb2024.02.020.
    [22]
    朱冠南, 王争论, 马佳佳, 等. 低压环境下膛口冲击波实验研究 [J]. 兵工学报, 2014, 35(6): 808–813. DOI: 10.3969/j.issn.1000-1093.2014.06.009.

    ZHU G N, WANG Z L, MA J J, et al. Research on muzzle shock wave in low pressure environment [J]. Acta Armamentarii, 2014, 35(6): 808–813. DOI: 10.3969/j.issn.1000-1093.2014.06.009.
    [23]
    陈龙明, 李志斌, 陈荣, 等. 高原环境爆炸冲击波传播特性的实验研究 [J]. 爆炸与冲击, 2022, 42(5): 053206. DOI: 10.11883/bzycj-2021-0279.

    CHEN L M, LI Z B, CHEN R, et al. An experimental study on propagation characteristics of blast waves under plateau environment [J]. Explosion and Shock Waves, 2022, 42(5): 114–124. DOI: 10.11883/bzycj-2021-0279.
    [24]
    WANG L Q, KONG D R. Research on the distribution characteristics of explosive shock waves at different altitudes [J]. Defence Technology, 2023, 24: 340–348. DOI: 10.1016/j.dt.2022.03.002.
    [25]
    孙艳馥, 王欣. 爆炸冲击波对人体损伤与防护分析 [J]. 火炸药学报, 2008, 31(4): 50–53. DOI: 10.14077/j.issn.1007-7812.2008.04.022.

    SUN Y F, WANG X. Analysis of human body injury due to blast wave and protection method [J]. Chinese Journal of Explosives & Propellants, 2008, 31(4): 50–53. DOI: 10.14077/j.issn.1007-7812.2008.04.022.
    [26]
    杨志焕, 王正国, 唐承功, 等. 炮口冲击波的生物效应及其对人员内脏损伤的安全限值 [J]. 振动与冲击, 1994(4): 39–45.

    YANG Z H, WANG Z G, TANG C G, et al. Biological effect of muzzle shock wave and its safety limit for human viscera damage [J]. Journal of Vibration and Shock, 1994(4): 39–45.
    [27]
    YELVERTON J, RICHMOND D, FLETCHER E, et al. Bioeffects of simulated muzzle blasts [C]//Proceedings of the Eighth International Symposium on Military Application of Blast Simulation. Spiez, Switzerland, 1992.
    [28]
    李晓炎, 宁心, 杨志焕, 等. 高原与平原冲击波物理参数和生物效应的比较研究 [J]. 中国危重病急救医学, 2005, 17(2): 102–104. DOI: 10.3760/j.issn:1003-0603.2005.02.012.

    LI X Y, NING X, YANG Z H, et al. Comparative study on physical parameters and biological effects of blast wave on plateau and on plain [J]. Chinese Critical Care Medicine, 2005, 17(2): 102–104. DOI: 10.3760/j.issn:1003-0603.2005.02.012.
    [29]
    李森, 王海燕, 龙在云, 等. 特殊环境冲击伤研究现状与展望 [J]. 中华诊断学电子杂志, 2020, 8(2): 73–77. DOI: 10.3877/cma.j.issn.2095-655X.2020.02.001.

    LI S, WANG H Y, LONG Z Y, et al. Research status and prospects of blast injury in special environment [J]. Chinese Journal of Diagnostics (Electronic Edition), 2020, 8(2): 73–77. DOI: 10.3877/cma.j.issn.2095-655X.2020.02.001.
    [30]
    国防科学技术工业委员会. XXXX脉冲噪声和冲击波对人员听觉器官损伤的安全限值: GJB XX-XX [S]. 1996.
    [31]
    中央军委装备发展部. 炮口冲击波对人员非听觉器官损伤的安全限值: GJB 1158A-2021 [S]. 北京: 国家军用标准出版发行部, 2021.
    [32]
    JIANG X H, CHEN Z H, FAN B C, et al. Numerical simulation of blast flow fields induced by a high-speed projectile [J]. Shock Waves, 2008, 18(3): 205–212. DOI: 10.1007/s00193-008-0155-9.
    [33]
    LEI H X, ZHAO J L, WANG Z J. Numerical simulation and experiments on muzzle blast overpressure in large-caliber weapons [J]. Journal of Engineering Science and Technology Review, 2016, 9(5): 111–116. DOI: 10.25103/jestr.095.17.
    [34]
    ZHAO X Y, ZHOU K D, HE L, et al. Numerical simulation and experiment on impulse noise in a small caliber rifle with muzzle brake [J]. Shock and Vibration, 2019, 2019: 5938034. DOI: 10.1155/2019/5938034.
    [35]
    魏胜程, 钱林方, 徐亚栋, 等. 车载炮驾驶室表面炮口冲击波超压特性 [J]. 兵工学报, 2024, 45(11): 1–14. DOI: 10.12382/bgxb.2023.0687.

    WEI S C, QIAN L F, XU Y D, et al. Muzzle blast overpressure characteristics on the surface of vehicle-mounted howitzer’s crew compartment [J]. Acta Armamentarii, 2024, 45(11): 1–14. DOI: 10.12382/bgxb.2023.0687.
    [36]
    栗志杰, 由小川, 柳占立, 等. 爆炸冲击波作用下颅脑损伤机理的数值模拟研究 [J]. 爆炸与冲击, 2020, 40(1): 100-111. DOI: 10.11883/bzycj-2018-0348.

    LI Z J, YOU X C, LIU Z L, et al. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves [J]. Explosion and Shock Waves, 2020, 40(1): 97-108. DOI: 10.11883/bzycj-2018-0348.
    [37]
    DU Z B, LI Z J, WANG P, et al. Revealing the effect of skull deformation on intracranial pressure variation during the direct interaction between blast wave and surrogate head [J]. Annals of Biomedical Engineering, 2022, 50(9): 1038–1052. DOI: 10.1007/s10439-022-02982-5.
    [38]
    LI Z J, DU Z B, YOU X C, et al. Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading [J]. Acta Mechanica Sinica, 2019, 35(5): 1104–1119. DOI: 10.1007/s10409-019-00875-w.
    [39]
    YANG F Y, LI Z J, ZHUANG Z, et al. Evaluating the blast mitigation performance of hard/soft composite structures through field explosion experiment and numerical analysis [J]. Acta Mechanica Sinica, 2022, 38(1): 121238. DOI: 10.1007/s10409-021-09001-x.
    [40]
    YANG F Y, LI Z J, LIU Z L, et al. Shock loading mitigation performance and mechanism of the PE/wood/PU/foam structures [J]. International Journal of Impact Engineering, 2021, 155: 103904. DOI: 10.1016/J.IJIMPENG.2021.103904.
    [41]
    刘念祖, 戴劲松, 王茂森, 等. 基于流固耦合的某摆膛炮膛管间隙研究 [J]. 弹道学报, 2019, 31(3): 62–65. DOI: 10.12115/j.issn.1004-499X(2019)03-012.

    LIU N Z, DAI J S, WANG M S, et al. Research on a pendulum gun-tube clearance based on fluid-structure coupling [J]. Journal of Ballistics, 2019, 31(3): 62–65. DOI: 10.12115/j.issn.1004-499X(2019)03-012.
    [42]
    赵耀, 郑海文, 刘胜超, 等. 自行高炮自动机身管热特性研究 [J]. 兵器装备工程学报, 2022, 43(10): 114–119. DOI: 10.11809/bqzbgcxb2022.10.016.

    ZHAO Y, ZHENG H W, LIU S C, et al. Study on thermal characteristics of automatic mechanism tube of self-propelled anti-air gun [J]. Journal of Ordnance Equipment Engineering, 2022, 43(10): 114–119. DOI: 10.11809/bqzbgcxb2022.10.016.
    [43]
    王鸿, 高俊宏, 岳红, 等. 某新型火炮冲击波的生物效应研究 [J]. 职业与健康, 2014, 30(11): 1466–1467,1470. DOI: 10.13329/j.cnki.zyyjk.2014.11.042.

    WANG H, GAO J H, YUE H, et al. Study on biological effects of the new-type gun blast waves [J]. Occupation and Health, 2014, 30(11): 1466–1467,1470. DOI: 10.13329/j.cnki.zyyjk.2014.11.042.
    [44]
    杨志焕, 姚德胜, 王正国, 等. 炮口冲击波对炮手的影响 [J]. 第三军医大学学报, 1991, 13(4): 412–413. DOI: 10.16016/j.1000-5404.1991.04.046.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (49) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return