Citation: | KANG Pulin, LEI Tao, LI Lifeng. Formation mechanism of blasting crater considering the dynamic-static sequential action of blasting[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0112 |
[1] |
高启栋, 靳军, 王亚琼, 等. 孔内起爆位置对爆破振动场分布的影响作用规律 [J]. 爆炸与冲击, 2021, 41(10): 105201. DOI: 10.11883/bzycj-2020-0352.
GAO Q D, JIN J, WANG Y Q, et al. Acting law of in-hole initiation position on distribution of blast vibration field [J]. Explosion and Shock Waves, 2021, 41(10): 105201. DOI: 10.11883/bzycj-2020-0352.
|
[2] |
高峰, 李新, 罗增武, 等. 爆破漏斗体积测量方法比较与应用研究 [J]. 矿冶工程, 2023, 43(3): 38–41. DOI: 10.3969/j.issn.0253-6099.2023.03.009.
GAO F, LI X, LUO Z W, et al. Comparison of different ways of volume measurement for explosion-produced crater [J]. Mining and Metallurgical Engineering, 2023, 43(3): 38–41. DOI: 10.3969/j.issn.0253-6099.2023.03.009.
|
[3] |
范勇, 吴进高, 冷振东, 等. 爆破漏斗岩石破碎块度实验与仿真 [J]. 岩石力学与工程学报, 2023, 42(9): 2125–2139. DOI: 10.13722/j.cnki.jrme.2022.0869.
FAN Y, WU J G, LENG Z D, et al. Experiment and simulation of rock fragmentation size of blasting crater [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(9): 2125–2139. DOI: 10.13722/j.cnki.jrme.2022.0869.
|
[4] |
齐金铎. 现代爆破理论的发展阶段 [J]. 爆破, 1996, 13(4): 7–10.
QI J D. Stages in the development of modern blasting theory [J]. Blasting, 1996, 13(4): 7–10.
|
[5] |
史涵虚, 周传波, 张升, 等. 基于CWM和CM的长滩露天矿深孔台阶爆破岩体可爆性评价 [J]. 爆破, 2024, 41(1): 51–59, 119. DOI: 10.3963/j.issn.1001-487X.2024.01.008.
SHI H X, ZHOU C B, ZHANG S, et al. Evaluation on rock mass blastability of deep hole bench blasting in Changtan open-pit mine based on CWM and CM [J]. Blasting, 2024, 41(1): 51–59, 119. DOI: 10.3963/j.issn.1001-487X.2024.01.008.
|
[6] |
张智宇, 陈春超, 黄永辉, 等. 爆破漏斗鼓包运动模型的构建及验证 [J]. 北京理工大学学报, 2020, 40(8): 810–817. DOI: 10.15918/j.tbit1001-0645.2019.219.
ZHANG Z Y, CHEN C C, HUANG Y H, et al. Construction and validation for the model of bulging movement in explosion [J]. Transactions of Beijing Institute of Technology, 2020, 40(8): 810–817. DOI: 10.15918/j.tbit1001-0645.2019.219.
|
[7] |
李祥龙, 胡涛, 张智宇, 等. 基于高速摄影技术爆破鼓包运动规律的研究 [J]. 北京理工大学学报, 2015, 35(12): 1228–1232. DOI: 10.15918/j.tbit1001-0645.2015.12.004.
LI X L, HU T, ZHANG Z Y, et al. Bulging movement in explosion based on high speed photography technology [J]. Transactions of Beijing Institute of Technology, 2015, 35(12): 1228–1232. DOI: 10.15918/j.tbit1001-0645.2015.12.004.
|
[8] |
ZHANG F P, YAN G L, YANG Q B, et al. Strain field evolution characteristics of free surface during crater blasting in sandstone under high stress [J]. Applied Sciences, 2020, 10(18): 6285. DOI: 10.3390/app10186285.
|
[9] |
YAN G L, ZHANG F P, KU T, et al. Experimental study on failure mechanism and geometric parameters of blasting crater under uniaxial static compressive stresses [J]. Bulletin of Engineering Geology and the Environment, 2022, 81(6): 251. DOI: 10.1007/s10064-022-02714-y.
|
[10] |
PAN D, ZHOU K P, LI N, et al. The optimization research on large-diameter longhole blasting parameters of underground mine based on artificial neural network [C]//Proceedings of 2009 Second International Conference on Intelligent Computation Technology and Automation. Changsha: IEEE, 2009, 1: 419–422. DOI: 10.1109/ICICTA.2009.109.
|
[11] |
冯春, 李世海, 郑炳旭, 等. 基于连续-非连续单元方法的露天矿三维台阶爆破全过程数值模拟 [J]. 爆炸与冲击, 2019, 39(2): 024201. DOI: 10.11883/bzycj-2017-0393.
FENG C, LI S H, ZHENG B X, et al. Numerical simulation on complete process of three-dimensional bench blasting in an open-pit mine based on CDEM [J]. Explosion and Shock Waves, 2019, 39(2): 024201. DOI: 10.11883/bzycj-2017-0393.
|
[12] |
HU Y G, LU W B, CHEN M, et al. Numerical simulation of the complete rock blasting response by SPH-DAM-FEM approach [J]. Simulation Modelling Practice and Theory, 2015, 56: 55–68. DOI: 10.1016/j.simpat.2015.04.001.
|
[13] |
YU R G, ZHANG Z H, GAO W L, et al. Numerical simulation of rock mass blasting vibration using particle flow code and particle expansion loading algorithm [J]. Simulation Modelling Practice and Theory, 2023, 122: 102686. DOI: 10.1016/j.simpat.2022.102686.
|
[14] |
GAO W L, ZHANG Z H, LI B J, et al. Study on numerical simulation of geometric elements of blasting funnel based on PFC5.0 [J]. Shock and Vibration, 2021, 2021(1): 8812964. DOI: 10.1155/2021/8812964.
|
[15] |
ZHANG Z H, GAO W L, LI K P, et al. Numerical simulation of rock mass blasting using particle flow code and particle expansion loading algorithm [J]. Simulation Modelling Practice and Theory, 2020, 104: 102119. DOI: 10.1016/j.simpat.2020.102119.
|
[16] |
傅鹏. 岩体结构面对台阶爆破效果影响研究 [J]. 爆破, 2023, 40(1): 77–84. DOI: 10.3963/j.issn.1001-487X.2023.01.011.
FU P. Influence of rock mass structure on bench blasting effect [J]. Blasting, 2023, 40(1): 77–84. DOI: 10.3963/j.issn.1001-487X.2023.01.011.
|
[17] |
赵毅波, 苏都都, 范勇, 等. 群孔起爆不同短延迟时间岩石破裂过程仿真与块度分析 [J]. 爆破, 2023, 40(3): 92–100, 122. DOI: 10.3963/j.issn.1001-487X.2023.03.013.
ZHAO Y B, SU D D, FAN Y, et al. Simulation of rock fracture process and fragmentation analysis with different short delays for group hole blasting [J]. Blasting, 2023, 40(3): 92–100, 122. DOI: 10.3963/j.issn.1001-487X.2023.03.013.
|
[18] |
XIA M, ZHOU K P. Particle simulation of the failure process of brittle rock under triaxial compression [J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(5): 507–513. DOI: 10.1007/s12613-010-0350-4.
|
[19] |
POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 677–691. DOI: 10.1016/j.ijrmms.2006.10.002.
|
[20] |
YANG J X, SHI C, YANG W K, et al. Numerical simulation of column charge explosive in rock masses with particle flow code [J]. Granular Matter, 2019, 21(4): 96. DOI: 10.1007/s10035-019-0950-2.
|
[21] |
AN L, SUORINENI F T, XU S, et al. A feasibility study on confinement effect on blasting performance in narrow vein mining through numerical modelling [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 84–94. DOI: 10.1016/j.ijrmms.2018.10.010.
|
[22] |
HAGAN T N. Rock breakage by explosives [M]//OPPENHEIM A K. Gasdynamics of Explosions and Reactive Systems. Oxford: Pergamon, 1980: 329–340. DOI: 10.1016/B978-0-08-025442-5.50034-2.
|
[23] |
CLARK J A, DURELLI A J. An introduction to dynamic photoelasticity: discussion [J]. Experimental Mechanics, 1983, 23(1): 42–48. DOI: 10.1007/BF02328680.
|
[24] |
王家来, 徐颖. 应变波对岩体的损伤作用和爆生裂纹传播 [J]. 爆炸与冲击, 1995, 15(3): 212–216. DOI: 10.11883/1001-1455(1995)03-0212-5.
WANG J L, XU Y. Damaging effects of strain waves on rock masses and explosive crack propagation [J]. Explosion and Shock Waves, 1995, 15(3): 212–216. DOI: 10.11883/1001-1455(1995)03-0212-5.
|
[25] |
苏都都, 严鹏, 卢文波, 等. 露天台阶爆破爆堆形态的PFC模拟 [J]. 爆破, 2012, 29(3): 35–41. DOI: 10.3963/j.issn.1001-487X.2012.03.009.
SU D D, YAN P, LU W B, et al. Prediction of muckpile profile for open bench blasting with PFC [J]. Blasting, 2012, 29(3): 35–41. DOI: 10.3963/j.issn.1001-487X.2012.03.009.
|
[26] |
黄尘, 李江腾, 赵远, 等. 基于PFC2D的冬瓜山铜矿爆破参数优化 [J]. 矿冶工程, 2022, 42(1): 1–4. DOI: 10.3969/j.issn.0253-6099.2022.01.001.
HUANG C, LI J T, ZHAO Y, et al. Optimization of blasting parameters for Dongguashan copper mine based on PFC2D [J]. Mining and Metallurgical Engineering, 2022, 42(1): 1–4. DOI: 10.3969/j.issn.0253-6099.2022.01.001.
|
[27] |
JEON S S, KIM D S, JANG Y W. Stability assessment of concrete lining and rock bolts of the adjacent tunnel by blast-induced vibration [J]. Journal of the Korean Geotechnical Society, 2007, 23(10): 33–45. DOI: 10.7843/kgs.2007.23.10.33.
|
[28] |
冷振东, 刘亮, 周旺潇, 等. 起爆位置对台阶爆破爆堆形态影响的离散元分析 [J]. 爆破, 2018, 35(2): 50–55, 100. DOI: 10.3963/j.issn.1001-487X.2018.02.009.
LENG Z D, LIU L, ZHOU W X, et al. Numerical investigation of initiation points on muckpile profile in bench blasting [J]. Blasting, 2018, 35(2): 50–55, 100. DOI: 10.3963/j.issn.1001-487X.2018.02.009.
|
[29] |
YE Z W, YANG J H, YAO C, et al. Attenuation characteristics of shock waves in drilling and blasting based on viscoelastic wave theory [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 171: 105573. DOI: 10.1016/j.ijrmms.2023.105573.
|
[30] |
杜俊林, 罗强, 宗琦. 空气不耦合装药爆破孔壁冲击压力分析 [J]. 西安科技大学学报, 2005, 25(3): 306–310. DOI: 10.3969/j.issn.1672-9315.2005.03.009.
DU J L, LUO Q, ZONG Q. Analysis on preliminary shock pressure on borehole of air-de-coupling charging [J]. Journal of Xi'an University of Science and Technology, 2005, 25(3): 306–310. DOI: 10.3969/j.issn.1672-9315.2005.03.009.
|
[31] |
陈士海, 李玉民, 林从谋, 等. 条形装药硐室爆破研究 [J]. 爆炸与冲击, 1995, 15(4): 363–373. DOI: 10.11883/1001-1455(1995)04-0363-11.
CHEN S H, LI Y M, LIN C M, et al. Explosive blast studies of strip-charged chambers [J]. Explosion and Shock Waves, 1995, 15(4): 363–373. DOI: 10.11883/1001-1455(1995)04-0363-11.
|
[32] |
田浩帆, 雷振, 包太, 等. 初始地应力作用下岩石爆破裂纹扩展研究 [J]. 有色金属工程, 2022, 12(3): 138–146, 159. DOI: 10.3969/j.issn.2095-1744.2022.03.018.
TIAN H F, LEI Z, BAO T, et al. Study on rock blasting crack growth under initial in-situ stress [J]. Nonferrous Metals Engineering, 2022, 12(3): 138–146, 159. DOI: 10.3969/j.issn.2095-1744.2022.03.018.
|
[33] |
NING Y J, YANG J, MA G W, et al. Modelling rock blasting considering explosion gas penetration using discontinuous deformation analysis [J]. Rock Mechanics and Rock Engineering, 2011, 44(4): 483–490. DOI: 10.1007/s00603-010-0132-3.
|
[34] |
于成龙, 王仲琦. 球形装药爆腔预测的准静态模型 [J]. 爆炸与冲击, 2017, 37(2): 249–254. DOI: 10.11883/1001-1455(2017)02-0249-06.
YU C L, WANG Z Q. Quasi-static model for predicting explosion cavity with spherical charges [J]. Explosion and Shock Waves, 2017, 37(2): 249–254. DOI: 10.11883/1001-1455(2017)02-0249-06.
|
[35] |
吴再海, 安龙, 齐兆军, 等. 基于LS-DYNA与PFC联合的岩体爆破数值模拟方法分析 [J]. 采矿与安全工程学报, 2021, 38(3): 609–614. DOI: 10.13545/j.cnki.jmse.2020.0133.
WU Z H, AN L, QI Z J, et al. The numerical simulation method of rock mass blasting based on PFC combined with LS-DYNA [J]. Journal of Mining & Safety Engineering, 2021, 38(3): 609–614. DOI: 10.13545/j.cnki.jmse.2020.0133.
|
[36] |
LYSMER J, KUHLEMEYER R L. Finite dynamic model for infinite media [J]. Journal of the engineering mechanics division, 1969, 95(4): 859–877. DOI: 10.1061/JMCEA3.0001144.
|
[37] |
石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用 [M]. 北京: 中国建筑工业出版社, 2018: 353–360.
SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC 5.0) [M]. Beijing: China Architecture & Building Press, 2018: 353–360.
|
[38] |
许彪. 基于PFC的岩石控制爆破技术研究 [D]. 淮南: 安徽理工大学, 2018: 29–30. DOI: 10.7666/d.Y3396161.
XU B. Research on controlled blasting technology of rock based on PFC [D]. Huainan: Anhui University of Science and Technology, 2018: 29–30. DOI: 10.7666/d.Y3396161.
|
[39] |
雷涛, 康普林, 叶海旺, 等. 柱状药包爆破过程中应力波叠加与岩体裂隙分布的方向效应研究 [J]. 岩石力学与工程学报, 2024, 43(2): 399–411. DOI: 10.13722/j.cnki.jrme.2023.0476.
LEI T, KANG P L, YE H W, et al. Study on the direction effect of stress wave superposition and fracture distribution in rock mass during cylindrical charge blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(2): 399–411. DOI: 10.13722/j.cnki.jrme.2023.0476.
|
[40] |
冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进 [J]. 爆炸与冲击, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.
LENG Z D, LU W B, CHEN M, et al. Improved calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.
|