Citation: | WU Hao, ZHANG Yu, CHENG Yuehua, CEN Guohua. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0136 |
[1] |
AUSTIM C F, HALSEY C C, CLODT R L. Protection systems development: ESL-TR-83-39 [R]. Florida: Engineering and Services Laboratory, Air Force Engineering and Services Center, Tyndall Air Force Base, 1982.
|
[2] |
GELMAN M D, RICHARD B N, ITO Y M. Impact of armor-piercing projectile into array of large caliber boulders: SL-87-30 [R]. Vicksburg, Mississippi: U. S. Army Engineer Waterways Experiment Station, 1987.
|
[3] |
ROHANI B. Penetration of kinetic energy projectiles into rock-rubble/boulder overlays [C]//Proceedings of the 3rd International Symposium on Interaction of Nonnuclear Munitions with Structures. Mannheim: Federal Minister of Defense, 1987: 863.
|
[4] |
LANGHEIM H, PAHL H, SCHMOLINSKE E, et al. Subscale penetration tests with bombs and advanced penetration against hardened structures [C]//Proceedings of the 6th International Symposium on Interaction of Nonnuclear Munitions with Structures. Panama: Wright Laboratory Air Base Systems Branch, 1993: 12–17.
|
[5] |
BLUDAU C, KEUSER M, KUSTERMANN A. Perforation resistance of high-strength concrete panels [J]. Structural Journal, 2006, 103(2): 188–195. DOI: 10.14359/15176.
|
[6] |
ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
|
[7] |
ZHANG M H, SHARIF M S H, LU G. Impact resistance of high-strength fibre-reinforced concrete [J]. Magazine of Concrete Research, 2007, 59(3): 199–210. DOI: 10.1680/macr.2007.59.3.199.
|
[8] |
WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
|
[9] |
WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510-1 320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
|
[10] |
宫俊, 吴昊, 方秦, 等. 刚玉骨料超高性能水泥基材料抗侵彻试验和细观数值模拟 [J]. 振动与冲击, 2017, 36(1): 55–63. DOI: 10.13465/j.cnki.jvs.2017.01.008.
GONG J, WU H, FANG Q, et al. Test and mesoscale numerical simulation for corundum-aggregate ultra-high performance cementitious composites against projectile penetration [J]. Journal of Vibration and Shock, 2017, 36(1): 55–63. DOI: 10.13465/j.cnki.jvs.2017.01.008.
|
[11] |
唐德高, 贺虎成, 陈向欣, 等. 刚玉块石混凝土抗弹丸侵彻效应试验研究 [J]. 振动与冲击, 2005, 24(6): 37–39. DOI: 10.13465/j.cnki.jvs.2005.06.011.
TANG D G, HE H C, CHEN X X, et al. Experimental study on corundum-rubble concrete against projectile [J]. Journal of Vibration and Shock, 2005, 24(6): 37–39. DOI: 10.13465/j.cnki.jvs.2005.06.011.
|
[12] |
穆朝民, 施鹏, 辛凯. 射弹侵彻块石遮弹层的数值模拟 [J]. 兵器材料科学与工程, 2012, 35(5): 4–8. DOI: 10.14024/j.cnki.1004-244x.2012.05.001.
MU C M, SHI P, XIN K. Numerical simulation on rock anti-penetration layer against penetrating [J]. Ordnance Material Science and Engineering, 2012, 35(5): 4–8. DOI: 10.14024/j.cnki.1004-244x.2012.05.001.
|
[13] |
方秦, 张锦华, 还毅, 等. 全级配混凝土三维细观模型的建模方法研究 [J]. 工程力学, 2013, 30(1): 14–21,30. DOI: 10.6052/j.issn.1000-4750.2011.06.0398.
FANG Q, ZHANG J H, HUAN Y, et al. The investigation into three-dimensional mesoscale modelling of fully-graded concrete [J]. Engineering Mechanics, 2013, 30(1): 14–21,30. DOI: 10.6052/j.issn.1000-4750.2011.06.0398.
|
[14] |
方秦, 杜涛, 彭永, 等. 对遮弹层抗弹体侵彻性能的讨论 [J]. 防护工程, 2014, 36(5): 31–36.
FANG Q, DU T, PENG Y, et al. Discussions on the performance of the overlays against the penetration of projectiles [J]. Protective Engineering, 2014, 36(5): 31–36.
|
[15] |
FANG Q, ZHANG J H. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble [J]. International Journal of Impact Engineering, 2014, 63: 118–128. DOI: 10.1016/j.ijimpeng.2013.08.010.
|
[16] |
逄高伟, 方秦, 孔祥振, 等. WDU-34/B战斗部侵彻块石遮弹层的数值模拟研究 [J]. 防护工程, 2020, 42(4): 15–22. DOI: 10.3969/j.issn.1674-1854.2020.04.002.
PANG G W, FANG Q, KONG X Z, et al. Numerical simulation of WDU-34/B warhead penetrating into rubble burster layer [J]. Protective Engineering, 2020, 42(4): 15–22. DOI: 10.3969/j.issn.1674-1854.2020.04.002.
|
[17] |
柳兴旺, 邓旭艳, 秦青阳, 等. 块石混凝土遮弹层界面对抗侵彻性能影响的数值模拟研究 [J]. 高压物理学报, 2023, 37(2): 025101. DOI: 10.11858/gywlxb.20220669.
LIU X W, DENG X Y, QIN Q Y, et al. Numerical investigation on effect of interface modelling of rock-rubble shielding overlays on the anti-penetration capability [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025101. DOI: 10.11858/gywlxb.20220669.
|
[18] |
程月华, 周飞, 吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计 [J]. 爆炸与冲击, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
CHENG Y H, ZHOU F, WU H. Design of concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
|
[19] |
程月华, 吴昊, 岑国华, 等. 侵彻爆炸联合作用下超高性能混凝土遮弹层设计 [J/OL]. 爆炸与冲击, 2024[2024-05-15]. https://www.bzycj.cn/cn/article/doi/ 10.11883/bzycj-2024-0061. DOI: 10.11883/bzycj-2024-0061.
CHENG Y H, WU H, CEN G H, et al. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads [J/OL]. Explosion and Shock Waves, 2024[2024-05-15]. https://www.bzycj.cn/cn/article/doi/ 10.11883/bzycj-2024-0061. DOI: 10.11883/bzycj-2024-0061.
|
[20] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. Hague: International Ballistics Committee, 1983: 541–547.
|
[21] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[22] |
Livermore Software Technology Corporation (LSTC). LS-DYNA® keyword user’s manual: version 971 [R]. Livermore: Livermore Software Technology Corporation, 2007.
|
[23] |
方秦, 罗曼, 张锦华, 等. 弹体侵彻刚玉块石混凝土复合靶体的数值分析 [J]. 爆炸与冲击, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.
FANG Q, LUO M, ZHANG J H, et al. Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay [J]. Explosion and Shock Waves, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.
|
[24] |
CHENG Y H, WU H, JIANG P F, et al. Ballistic resistance of high-strength armor steel against ogive-nosed projectile impact [J]. Thin-Walled Structures, 2023, 183: 110350. DOI: 10.1016/j.tws.2022.110350.
|
[25] |
JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
|
[26] |
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]// JACKSON N, DICKERT S. Proceedings of the 14th International Symposium on Ballistics. Québec: American Defense Preparedness Association, 1993: 591-600.
|
[27] |
MCLNTOSH G. The Johnson-Holmquist ceramic model as used in LS-DYNA2D: DREV-TM-9822 [R]. Valcartier: Quebec Research and Development Branch Department of National Defence, 1998.
|
[28] |
GAZONAS G A. Implementation of the Johnson-Holmquist II (JH-2) constitutive model into DYNA3D: ARL-TR-2699 [R]. Aberdeen Proving Ground: Army Research Laboratory, 2002.
|
[29] |
方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法 [J]. 工程力学, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.
FANG Q, KONG X Z, WU H, et al. Determination of Holmquist-Johnson-Cook consitiutive model parameters of rock [J]. Engineering Mechanics, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.
|
[30] |
REN G M, WU H, FANG Q, et al. Parameters of Holmquist–Johnson–Cook model for high-strength concrete-like materials under projectile impact [J]. International Journal of Protective Structures, 2017, 8(3): 352–367. DOI: 10.1177/2041419617721552.
|
[31] |
BARANOWSKI P, KUCEWICZ M, MAŁACHOWSKI J, et al. Failure behavior of a concrete slab perforated by a deformable bullet [J]. Engineering Structures, 2021, 245: 112832. DOI: 10.1016/j.engstruct.2021.112832.
|
[32] |
Livermore Software Technology Corporation (LSTC). LS-DYNA® keyword user's manual: volume Ⅱ material models: LS-DYNA R7.1 [R]. Livermore: Livermore Software Technology Corporation, 2014: 767–771, 1413–1421.
|
[33] |
章毅, 张湘茹, 吴昊, 等. 混凝土3D细观模型及准静态力学行为分析 [J]. 工程力学, 2024, 41(8): 80–92. DOI: 10.6052/j.issn.1000-4750.2022.06.0549.
ZHANG Y, ZHANG X R, WU H, et al. 3D mesoscale model and quasi-static mechanical analysis of concrete behavior [J]. Engineering Mechanics, 2024, 41(8): 80–92. DOI: 10.6052/j.issn.1000-4750.2022.06.0549.
|
[34] |
张湘茹, 程月华, 吴昊. 基于3D细观模型的混凝土动态压缩行为分析 [J]. 爆炸与冲击, 2024, 44(2): 023102. DOI: 10.11883/bzycj-2022-0541.
ZHANG X R, CHENG Y H, WU H. Analysis on dynamic compressive behavior of concrete based on a 3D mesoscale model [J]. Explosion and Shock Waves, 2024, 44(2): 023102. DOI: 10.11883/bzycj-2022-0541.
|
[35] |
张德志, 张向荣, 林俊德, 等. 高强钢弹对花岗岩正侵彻的实验研究 [J]. 岩石力学与工程学报, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
ZHANG D Z, ZHANG X R, LIN J D, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
|