Turn off MathJax
Article Contents
WU Hao, ZHANG Yu, CHENG Yuehua, CEN Guohua. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0136
Citation: WU Hao, ZHANG Yu, CHENG Yuehua, CEN Guohua. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0136

Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads

doi: 10.11883/bzycj-2024-0136
  • Received Date: 2024-05-15
  • Rev Recd Date: 2024-09-19
  • Available Online: 2024-09-23
  • Aiming at the resistance evaluation and engineering design of the rock-rubble concrete shield under the combination of penetration and explosion of Earth Penetrating Weapons, firstly, a finite element modeling method for rock-rubble concrete shields was proposed. By conducting numerical simulations of quasi-static and penetration tests on ultra-high performance concrete targets containing different coarse aggregate types (corundum and basalt), particle sizes (5–15 mm, 5–20 mm, 35–45 mm, and 65–75 mm), and volume fractions (15% and 30%), the reliability of the finite element analysis approach was thoroughly verified. Then, using the semi-infinite rock-rubble concrete shield penetrated by the SDB as a case study, the quantitative influence of type (corundum, basalt, and granite) and dimensionless particle size of rock-rubble (ranging from 0.3 to 2.2 times the projectile diameter) on the penetration depth was analyzed, and optimal design recommendations were determined. Furthermore, the penetration analyses of three typical prototype warheads, i.e., SDB, WDU-43/B, and BLU-109/B, were carried out, and the corresponding penetration resistances of normal strength concrete (NSC), ultra-high performance concrete (UHPC), and corundum rubble concrete (CRC) shields against the above three warheads were quantitatively compared. Finally, the engineering design method for the CRC shield under the combined effects of penetration and explosion of prototype warheads was proposed. The results indicate that the CRC shield containing the particle size of 1.3 to 1.7 times the projectile diameter exhibits the most excellent penetration resistance. Under the penetration of three types of warheads, the penetration depths in CRC shield were 0.29, 0.78, and 0.68 m, respectively, which are reduced by 61.8%–69.1% and 43.3%–58.0% compared to those in NSC and UHPC shields. Under the combined effects of penetration and explosion, the perforation limits of the CRC shield are 0.55, 1.41, and 1.48 m, while the scabbing limits are 1.11, 2.26, and 3.17 m. Compared with NSC and UHPC shields, the perforation limits are reduced by 58.5%–61.2% and 43.2%–58.1%, respectively, and the scabbing limits are reduced by 61.8%–69.2% and 34.7%–40.5%, respectively.
  • loading
  • [1]
    AUSTIM C F, HALSEY C C, CLODT R L. Protection systems development: ESL-TR-83-39 [R]. Florida: Engineering and Services Laboratory, Air Force Engineering and Services Center, Tyndall Air Force Base, 1982.
    [2]
    GELMAN M D, RICHARD B N, ITO Y M. Impact of armor-piercing projectile into array of large caliber boulders: SL-87-30 [R]. Vicksburg, Mississippi: U. S. Army Engineer Waterways Experiment Station, 1987.
    [3]
    ROHANI B. Penetration of kinetic energy projectiles into rock-rubble/boulder overlays [C]//Proceedings of the 3rd International Symposium on Interaction of Nonnuclear Munitions with Structures. Mannheim: Federal Minister of Defense, 1987: 863.
    [4]
    LANGHEIM H, PAHL H, SCHMOLINSKE E, et al. Subscale penetration tests with bombs and advanced penetration against hardened structures [C]//Proceedings of the 6th International Symposium on Interaction of Nonnuclear Munitions with Structures. Panama: Wright Laboratory Air Base Systems Branch, 1993: 12–17.
    [5]
    BLUDAU C, KEUSER M, KUSTERMANN A. Perforation resistance of high-strength concrete panels [J]. Structural Journal, 2006, 103(2): 188–195. DOI: 10.14359/15176.
    [6]
    ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
    [7]
    ZHANG M H, SHARIF M S H, LU G. Impact resistance of high-strength fibre-reinforced concrete [J]. Magazine of Concrete Research, 2007, 59(3): 199–210. DOI: 10.1680/macr.2007.59.3.199.
    [8]
    WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
    [9]
    WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510-1 320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
    [10]
    宫俊, 吴昊, 方秦, 等. 刚玉骨料超高性能水泥基材料抗侵彻试验和细观数值模拟 [J]. 振动与冲击, 2017, 36(1): 55–63. DOI: 10.13465/j.cnki.jvs.2017.01.008.

    GONG J, WU H, FANG Q, et al. Test and mesoscale numerical simulation for corundum-aggregate ultra-high performance cementitious composites against projectile penetration [J]. Journal of Vibration and Shock, 2017, 36(1): 55–63. DOI: 10.13465/j.cnki.jvs.2017.01.008.
    [11]
    唐德高, 贺虎成, 陈向欣, 等. 刚玉块石混凝土抗弹丸侵彻效应试验研究 [J]. 振动与冲击, 2005, 24(6): 37–39. DOI: 10.13465/j.cnki.jvs.2005.06.011.

    TANG D G, HE H C, CHEN X X, et al. Experimental study on corundum-rubble concrete against projectile [J]. Journal of Vibration and Shock, 2005, 24(6): 37–39. DOI: 10.13465/j.cnki.jvs.2005.06.011.
    [12]
    穆朝民, 施鹏, 辛凯. 射弹侵彻块石遮弹层的数值模拟 [J]. 兵器材料科学与工程, 2012, 35(5): 4–8. DOI: 10.14024/j.cnki.1004-244x.2012.05.001.

    MU C M, SHI P, XIN K. Numerical simulation on rock anti-penetration layer against penetrating [J]. Ordnance Material Science and Engineering, 2012, 35(5): 4–8. DOI: 10.14024/j.cnki.1004-244x.2012.05.001.
    [13]
    方秦, 张锦华, 还毅, 等. 全级配混凝土三维细观模型的建模方法研究 [J]. 工程力学, 2013, 30(1): 14–21,30. DOI: 10.6052/j.issn.1000-4750.2011.06.0398.

    FANG Q, ZHANG J H, HUAN Y, et al. The investigation into three-dimensional mesoscale modelling of fully-graded concrete [J]. Engineering Mechanics, 2013, 30(1): 14–21,30. DOI: 10.6052/j.issn.1000-4750.2011.06.0398.
    [14]
    方秦, 杜涛, 彭永, 等. 对遮弹层抗弹体侵彻性能的讨论 [J]. 防护工程, 2014, 36(5): 31–36.

    FANG Q, DU T, PENG Y, et al. Discussions on the performance of the overlays against the penetration of projectiles [J]. Protective Engineering, 2014, 36(5): 31–36.
    [15]
    FANG Q, ZHANG J H. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble [J]. International Journal of Impact Engineering, 2014, 63: 118–128. DOI: 10.1016/j.ijimpeng.2013.08.010.
    [16]
    逄高伟, 方秦, 孔祥振, 等. WDU-34/B战斗部侵彻块石遮弹层的数值模拟研究 [J]. 防护工程, 2020, 42(4): 15–22. DOI: 10.3969/j.issn.1674-1854.2020.04.002.

    PANG G W, FANG Q, KONG X Z, et al. Numerical simulation of WDU-34/B warhead penetrating into rubble burster layer [J]. Protective Engineering, 2020, 42(4): 15–22. DOI: 10.3969/j.issn.1674-1854.2020.04.002.
    [17]
    柳兴旺, 邓旭艳, 秦青阳, 等. 块石混凝土遮弹层界面对抗侵彻性能影响的数值模拟研究 [J]. 高压物理学报, 2023, 37(2): 025101. DOI: 10.11858/gywlxb.20220669.

    LIU X W, DENG X Y, QIN Q Y, et al. Numerical investigation on effect of interface modelling of rock-rubble shielding overlays on the anti-penetration capability [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025101. DOI: 10.11858/gywlxb.20220669.
    [18]
    程月华, 周飞, 吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计 [J]. 爆炸与冲击, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.

    CHENG Y H, ZHOU F, WU H. Design of concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
    [19]
    程月华, 吴昊, 岑国华, 等. 侵彻爆炸联合作用下超高性能混凝土遮弹层设计 [J/OL]. 爆炸与冲击, 2024[2024-05-15]. https://www.bzycj.cn/cn/article/doi/ 10.11883/bzycj-2024-0061. DOI: 10.11883/bzycj-2024-0061.

    CHENG Y H, WU H, CEN G H, et al. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads [J/OL]. Explosion and Shock Waves, 2024[2024-05-15]. https://www.bzycj.cn/cn/article/doi/ 10.11883/bzycj-2024-0061. DOI: 10.11883/bzycj-2024-0061.
    [20]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. Hague: International Ballistics Committee, 1983: 541–547.
    [21]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [22]
    Livermore Software Technology Corporation (LSTC). LS-DYNA® keyword user’s manual: version 971 [R]. Livermore: Livermore Software Technology Corporation, 2007.
    [23]
    方秦, 罗曼, 张锦华, 等. 弹体侵彻刚玉块石混凝土复合靶体的数值分析 [J]. 爆炸与冲击, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.

    FANG Q, LUO M, ZHANG J H, et al. Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay [J]. Explosion and Shock Waves, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.
    [24]
    CHENG Y H, WU H, JIANG P F, et al. Ballistic resistance of high-strength armor steel against ogive-nosed projectile impact [J]. Thin-Walled Structures, 2023, 183: 110350. DOI: 10.1016/j.tws.2022.110350.
    [25]
    JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
    [26]
    HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]// JACKSON N, DICKERT S. Proceedings of the 14th International Symposium on Ballistics. Québec: American Defense Preparedness Association, 1993: 591-600.
    [27]
    MCLNTOSH G. The Johnson-Holmquist ceramic model as used in LS-DYNA2D: DREV-TM-9822 [R]. Valcartier: Quebec Research and Development Branch Department of National Defence, 1998.
    [28]
    GAZONAS G A. Implementation of the Johnson-Holmquist II (JH-2) constitutive model into DYNA3D: ARL-TR-2699 [R]. Aberdeen Proving Ground: Army Research Laboratory, 2002.
    [29]
    方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法 [J]. 工程力学, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.

    FANG Q, KONG X Z, WU H, et al. Determination of Holmquist-Johnson-Cook consitiutive model parameters of rock [J]. Engineering Mechanics, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.
    [30]
    REN G M, WU H, FANG Q, et al. Parameters of Holmquist–Johnson–Cook model for high-strength concrete-like materials under projectile impact [J]. International Journal of Protective Structures, 2017, 8(3): 352–367. DOI: 10.1177/2041419617721552.
    [31]
    BARANOWSKI P, KUCEWICZ M, MAŁACHOWSKI J, et al. Failure behavior of a concrete slab perforated by a deformable bullet [J]. Engineering Structures, 2021, 245: 112832. DOI: 10.1016/j.engstruct.2021.112832.
    [32]
    Livermore Software Technology Corporation (LSTC). LS-DYNA® keyword user's manual: volume Ⅱ material models: LS-DYNA R7.1 [R]. Livermore: Livermore Software Technology Corporation, 2014: 767–771, 1413–1421.
    [33]
    章毅, 张湘茹, 吴昊, 等. 混凝土3D细观模型及准静态力学行为分析 [J]. 工程力学, 2024, 41(8): 80–92. DOI: 10.6052/j.issn.1000-4750.2022.06.0549.

    ZHANG Y, ZHANG X R, WU H, et al. 3D mesoscale model and quasi-static mechanical analysis of concrete behavior [J]. Engineering Mechanics, 2024, 41(8): 80–92. DOI: 10.6052/j.issn.1000-4750.2022.06.0549.
    [34]
    张湘茹, 程月华, 吴昊. 基于3D细观模型的混凝土动态压缩行为分析 [J]. 爆炸与冲击, 2024, 44(2): 023102. DOI: 10.11883/bzycj-2022-0541.

    ZHANG X R, CHENG Y H, WU H. Analysis on dynamic compressive behavior of concrete based on a 3D mesoscale model [J]. Explosion and Shock Waves, 2024, 44(2): 023102. DOI: 10.11883/bzycj-2022-0541.
    [35]
    张德志, 张向荣, 林俊德, 等. 高强钢弹对花岗岩正侵彻的实验研究 [J]. 岩石力学与工程学报, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.

    ZHANG D Z, ZHANG X R, LIN J D, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(9)

    Article Metrics

    Article views (194) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return