Citation: | ZHANG Quan, CHEN Jianbin, SHI Tongya, WANG Xiaofeng, NAN Xiaolong, WANG Yonggang. Mechanical behavior of additively manufactured AlSi10Mg alloy with annealing state under extreme conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0138 |
[1] |
XU W F, LUO Y X, ZHANG W, et al. Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate [J]. Journal of Materials Science & Technology, 2018, 34(1): 173–184. DOI: 10.1016/j.jmst.2017.05.015.
|
[2] |
TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Materials Science and Engineering: R, 2000, 29(3/4): 49–113. DOI: 10.1016/S0927-796X(00)00024-3.
|
[3] |
NG C H, YAHAYA S N M, LAI C F, et al. Reviews on the forming process of heat treatable aluminium alloys [J]. International Journal of Integrated Engineering, 2018, 10(5): 74–79. DOI: 10.30880/ijie.2018.10.05.012.
|
[4] |
ABOULKHAIR N T, SIMONELLI M, PATTY L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Progress in Materials Science, 2019, 106: 100578. DOI: 10.1016/j.pmatsci.2019.100578.
|
[5] |
KOTADIA H R, GIBBONS G, DAS A, et al. A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties [J]. Additive Manufacturing, 2021, 46: 102155. DOI: 10.1016/j.addma.2021.102155.
|
[6] |
LIMBASIYA N, JAIN A, SONI H, et al. A comprehensive review on the effect of process parameters and post-process treatments on microstructure and mechanical properties of selective laser melting of AlSi10Mg [J]. Journal of Materials Research and Technology, 2022, 22(1): 1141–1176. DOI: 10.1016/j.jmrt. 2022.09.092. DOI: 10.1016/j.jmrt.2022.09.092.
|
[7] |
SERT E, HITZLER L, HAFENSTEIN S, et al. Tensile and compressive behaviour of additively manufactured AlSi10Mg samples [J]. Progress in Additive Manufacturing, 2020, 5(3): 305–313. DOI: 10.1007/s40964-020-00131-9.
|
[8] |
LI P, KIM Y, BOBEL A C, et al. Microstructural origin of the anisotropic flow stress of laser powder bed fused AlSi10Mg [J]. Acta Materialia, 2021, 220: 117346. DOI: 10.1016/j.actamat.2021.117346.
|
[9] |
PONNUSAMY P, RAHMAN RASHID R A, MASOOD S H, et al. Mechanical properties of SLM-printed aluminium alloys: a review [J]. Materials, 2020, 13(19): 4301. DOI: 10.3390/ma13194301.
|
[10] |
ZHAO L, SONG L B, MACIAS J G S, et al. Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg [J]. Additive Manufacturing, 2022, 56: 102914. DOI: 10.1016/j.addma.2022.102914.
|
[11] |
PARK T H, BAEK M S, HYER H, et al. Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy manufactured by selective laser melting process [J]. Materials Characterization, 2021, 176: 111113. DOI: 10.1016/j.matchar.2021.111113.
|
[12] |
GIOVAGNOLI M, TOCCI M, FORTINI A, et al. Effect of different heat-treatment routes on the impact properties of an additively manufactured AlSi10Mg alloy [J]. Materials Science and Engineering: A, 2021, 802: 140671. DOI: 10.1016/j.msea.2020.140671.
|
[13] |
KEMPF A, HILGENBERG K. Influence of heat treatments on AlSi10Mg specimens manufactured with different laser powder bed fusion machines [J]. Materials Science and Engineering: A, 2021, 818: 141371. DOI: 10.1016/j.msea.2021.141371.
|
[14] |
RABORI A S, FALLAH V. Room temperature strain rate sensitivity of as-built 3D printed AlSi10Mg by laser powder bed fusion [J]. Materials Letters, 2022, 320: 132395. DOI: 10.1016/j.matlet.2022.132395.
|
[15] |
BAXTER C, CYR E, ODESHI A, et al. Constitutive models for the dynamic behaviour of direct metal laser sintered AlSi10Mg_200C under high strain rate shock loading [J]. Materials Science and Engineering: A, 2018, 731: 296–308. DOI: 10.1016/j.msea.2018.06.040.
|
[16] |
NUREL B, NAHMANY M, FRAGE N, et al. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting [J]. Additive Manufacturing, 2018, 22: 823–833. DOI: 10.1016/j.addma.2018.06.001.
|
[17] |
ALKHATIB S E, SERCOMBE T B. High strain-rate response of additively manufactured light metal alloys [J]. Materials & Design, 2022, 217: 110664. DOI: 10.1016/j.matdes.2022.110664.
|
[18] |
ZARETSKY E, STERN A, FRAGE N. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting [J]. Materials Science and Engineering: A, 2017, 688: 364–370. DOI: 10.1016/j.msea.2017.02.004.
|
[19] |
CAO Y, LIN X, WANG Q Z, et al. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. Journal of Materials Science & Technology, 2021, 62: 162–172. DOI: 10.1016/j.jmst.2020.04.066.
|
[20] |
GHASHGHAY B R, ABEDI H R, SHABESTARI S G, et al. Comparatively evaluating the room and high temperature mechanical properties of AlSi10Mg alloy produced by selective laser melting [J]. Journal of Materials Research and Technology, 2022, 21: 3570–3578. DOI: 10.1016/j.jmrt.2022.10.162.
|
[21] |
SALANDARI-RABORI A, DIAK B J, FALLAH V. Dislocation-obstacle interaction evolution in rate dependent plasticity of AlSi10Mg as-built microstructure by laser powder bed fusion [J]. Materials Science and Engineering: A, 2022, 857: 144043. DOI: 10.1016/j.msea.2022.144043.
|
[22] |
THIJS L, KEMPEN K, KRUTH J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder [J]. Acta Materialia, 2013, 61(5): 1809–1819. DOI: 10.1016/j.actamat.2012.11.052.
|
[23] |
张文奇, 朱海红, 胡志恒, 等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53(8): 918–926. DOI: 10.11900/0412.1961.2016.00472.
ZHANG W Q, ZHU H H, HU Z H, et al. Study on Selective Laser Melting of AlSi10Mg [J]. Acta Metallurgica Sinica, 2017, 53(8): 918–926. DOI: 10.11900/0412.1961.2016.00472.
|
[24] |
ALGHAMDI F, SONG X, HADADZADEH A, et al. Post heat treatment of additive manufactured AlSi10Mg: on silicon morphology, texture and small-scale properties [J]. Materials Science and Engineering: A, 2020, 783: 139296. DOI: 10.1016/j.msea.2020.139296.
|
[25] |
FATHI P, RAFIEAZAD M, DUAN X, et al. On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering [J]. Corrosion Science, 2019, 157: 126–145. DOI: 10.1016/j.corsci.2019.05.032.
|
[26] |
WANG X F, SHI T Y, WANG H B, et al. Mechanical behavior and microstructure evolution of Al-Mg-Si-Cu alloy under tensile loading at different strain rates [J]. Materials Research Express, 2019, 6(6): 066548. DOI: 10.1088/2053-1591/ab08d7.
|
[27] |
YAN S L, YANG H, LI H W, et al. Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: mechanism analysis and modeling [J]. Journal of Alloys and Compounds, 2016, 688: 776–786. DOI: 10.1016/j.jallcom.2016.07.077.
|
[28] |
ZHANG C S, WANG C X, GUO R, et al. Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation [J]. Journal of Alloys and Compounds, 2019, 773: 59–70. DOI: 10.1016/j.jallcom.2018.09.263.
|
[29] |
李娜, 李玉龙, 郭伟国. 3种铝合金材料动态性能及其温度相关性对比研究 [J]. 航空学报, 2008, 29(4): 903–908. DOI: 10.3321/j.issn:1000-6893.2008.04.022.
LI N, LI Y L, GUO W G. Comparison of mechanical properties and their temperature dependencies for three aluminium alloys under dynamic load [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 903–908. DOI: 10.3321/j.issn:1000-6893.2008.04.022.
|
[30] |
汪存显, 索涛, 李玉龙, 等. 不同温度和应变速率下超细晶铝的力学行为 [J]. 中国有色金属学报, 2014, 24(5): 1200–1205. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012.
WANG C X, SUO T, LI Y L, et al. Mechanical behavior of ultra-grained aluminum at different temperatures and strain rates [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1200–1205. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012.
|
[31] |
LIU Y H, NING Y Q, YANG X M, et al. Effect of temperature and strain rate on the workability of FGH4096 superalloy in hot deformation [J]. Materials and Design, 2016, 95: 669–676. DOI: 10.1016/j.matdes.2016.01.032.
|
[32] |
LIU C M, LI C G, ZHANG Z, et al. Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys [J]. Optics and Laser Technology, 2020, 123: 105926. DOI: 10.1016/j.optlastec.2019.105926.
|
[33] |
刘旭红, 黄西成, 陈裕泽, 等. 强动载荷下金属材料塑性变形本构模型评述 [J]. 力学进展, 2007, 37(3): 361–374. DOI: 10.3321/j.issn:1000-0992.2007.03.004.
LIU X H, HUANG X C, CHEN Y Z, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading [J]. Advances in Mechanics, 2007, 37(3): 361–374. DOI: 10.3321/j.issn:1000-0992.2007.03.004.
|
[34] |
WAYMEL R F, CHEW H B, LAMBROS J. Loading orientation effects on the strength anisotropy of additively-manufactured Ti-6Al-4V alloys under dynamic compression [J]. Experimental Mechanics, 2019, 59: 829–841. DOI: 10.1007/s11340-019-00506-2.
|
[35] |
YUAN K B, GUO W G, LI P H, et al. Thermomechanical behavior of laser metal deposited Inconel 718 superalloy over a wide range of temperature and strain rate: Testing and constitutive modeling [J]. Mechanics of Materials, 2019, 135: 13–25. DOI: 10.1016/j.mechmat.2019.04.024.
|
[36] |
ALKHATIB S E, XU S Q, LU G X, et al. Dynamic constitutive behavior of LPBFed metal alloys [J]. Journal of Materials Research and Technology, 2023. DOI: 10.1016/j.jmrt.2023.05.252.
|
[37] |
STANCZAK M, RUSINEK A, BRONISZEWSKA P, et al. Influence of strain rate and temperature on the mechanical behaviour of additively manufactured AlSi10Mg alloy–experiment and the phenomenological constitutive modelling [J]. Bulletin of the Polish Academy of Sciences. Technical Sciences, 2022, 70(4). DOI: 10.24425/bpasts.2022.141983.
|
[38] |
周琳. 金属材料新的动态本构模型 [D]. 合肥: 中国科学技术大学, 2019: 20. DOI: 10.27517/d.cnki.gzkju.2019.000016.
|
[39] |
ZHANG F, LIU Z, WANG Y, et al. The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture [J]. Journal of Magnesium and Alloys, 2020, 8(1): 172–183. DOI: 10.1016/j.jma.2019.05.013.
|
[40] |
TRIMBLE D, O'DONNELL G E. Flow stress prediction for hot deformation processing of 2024Al-T3 alloy [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(5): 1232–1250. DOI: 10.1016/S1003-6326(16)64194-8.
|