Citation: | WEI Guoxu, CUI Hao, ZHOU Hao, YANG Guitao, GUO Rui. Numerical simulation method for tungsten alloy projectilepenetration into steel target[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0147 |
[1] |
何杨, 高旭东, 董晓亮. 某陶瓷/钢复合装甲抗大质量破片侵彻能力研究 [J]. 振动与冲击, 2022, 41(13): 96–102. DOI: 10.13465/j.cnki.jvs.2022.13.013.
HE Y, GAO X D, DONG X L. Anti-penetration ability of a certain ceramic/steel composite armor against high mass fragments [J]. Journal of Vibration and Shock, 2022, 41(13): 96–102. DOI: 10.13465/j.cnki.jvs.2022.13.013.
|
[2] |
陈艳丹, 陈兴, 卢永刚, 等. 球形弹丸高速冲击IN718合金板的变形与破坏模式 [J]. 爆炸与冲击, 2024, 44(2): 023301. DOI: 10.11883/bzycj-2023-0071.
CHEN Y D, CHEN X, LU Y G, et al. Deformation and failure modes of IN718 alloy plateimpacted by spherical projectile at high velocity [J]. Explosion and Shock Waves, 2024, 44(2): 023301. DOI: 10.11883/bzycj-2023-0071.
|
[3] |
刘铁磊, 徐豫新, 王晓锋, 等. 钨合金球形破片侵彻低碳钢的弹道极限速度计算模型 [J]. 兵工学报, 2022, 43(4): 768–779. DOI: 10.12382/bgxb.2021.0448.
LIU T L, XU Y X, WANG X F, et al. Ballistic limit calculation model of tungsten alloy spherical fragments penetrating into low carbon steel plate [J]. Acta Armamentarii, 2022, 43(4): 768–779. DOI: 10.12382/bgxb.2021.0448.
|
[4] |
王逸凡, 李永鹏, 徐豫新, 等. 钨球对碳纤维增强复合材料包覆碳化硼陶瓷侵彻效应 [J]. 兵工学报, 2024, 45(8): 2487–2496. DOI: 10.12382/bgxb.2023.1083.
WANG Y F, LI Y P, XU Y X, et al. Penetration effect of tungsten alloy spherical projectile on CFRP-coated B4C ceramics [J]. Acta Armamentarii, 2024, 45(8): 2487–2496. DOI: 10.12382/bgxb.2023.1083.
|
[5] |
张钰龙, 郑宾, 郭华玲, 等. 球形钨破片侵彻钢靶毁伤效应研究 [J]. 兵器装备工程学报, 2020, 41(5): 32–36. DOI: 10.11809/bqzbgexb2020.05.007.
ZHANG Y L, ZHENG B, GUO H L, et al. Study on damage effect of spherical tungsten fragments penetrating steel targets [J]. Journal of Ordnance Equipment Engineering, 2020, 41(5): 32–36. DOI: 10.11809/bqzbgexb2020.05.007.
|
[6] |
包阔, 张先锋, 谈梦婷, 等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(12): 123102. DOI: 10.11883/bzycj-2018-0462.
BAO K, ZHANG X F, TAN M T, et al. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet [J]. Explosion and Shock Waves, 2019, 39(12): 123102. DOI: 10.11883/bzycj-2018-0462.
|
[7] |
马铭辉, 武一丁, 王晓东, 等. 多孔钛合金夹芯层陶瓷/UHMWPE复合结构的抗侵彻性能 [J]. 爆炸与冲击, 2024, 44(4): 041001. DOI: 10.11883/bzycj-2023-0375.
MA M H, WU Y D, WANG X D, et al. Penetration resistance of ceramic/UHMWPE composite structures with porous titanium alloy sandwich layer [J]. Explosion and Shock Waves, 2024, 44(4): 041001. DOI: 10.11883/bzycj-2023-0375.
|
[8] |
周楠, 王金相, 王小绪, 等. 球形弹丸作用下钢/铝爆炸复合靶的抗侵彻性能 [J]. 爆炸与冲击, 2011, 31(5): 497–503. DOI: 10.11883/1001-1455(2011)05-0497-07.
ZHOU N, WANG J X, WANG X X, et al. Anti-penetration performances of explosively welded steel/aluminium plates impacted by spherical projectiles [J]. Explosion and Shock Waves, 2011, 31(5): 497–503. DOI: 10.11883/1001-1455(2011)05-0497-07.
|
[9] |
徐豫新, 任杰, 王树山. 钨球正撞击下低碳钢板的极限贯穿厚度研究 [J]. 北京理工大学学报, 2017, 37(6): 551–556. DOI: 10.15918/j.tbit1001-0645.2017.06.001.
XU Y X, REN J, WANG S S. Research on perforation limit thickness of low carbon steel plates impacted normally by tungsten spheres [J]. Transactions of Beijing Institute of Technology, 2017, 37(6): 551–556. DOI: 10.15918/j.tbit1001-0645.2017.06.001.
|
[10] |
邸德宁, 陈小伟. 碎片云SPH方法数值模拟中的材料失效模型 [J]. 爆炸与冲击, 2018, 38(5): 948–956. DOI: 10.11883/bzycj-2017-0328.
DI D N, CHEN X W. Material failure models in SPH simulation of debris cloud [J]. Explosion and Shock Waves, 2018, 38(5): 948–956. DOI: 10.11883/bzycj-2017-0328.
|
[11] |
WEN K, CHEN X W, DI D N. Modeling on the shock wave in spheres hypervelocity impact on flat plates [J]. Defence Technology, 2019, 15(4): 457–466. DOI: 10.1016/j.dt.2019.01.006.
|
[12] |
WEN K, CHEN X W. Influence of the impedance gradient on the debris cloud produced by hypervelocity impact [J]. International Journal of Impact Engineering, 2022, 159: 104034. DOI: 10.1016/j.ijimpeng.2021.104034.
|
[13] |
WEN K, CHEN X W. Analysis of the stress wave and rarefaction wave produced by hypervelocity impact of sphere onto thin plate [J]. Defence Technology, 2020, 16(5): 969–979. DOI: 10.1016/j.dt.2019.11.017.
|
[14] |
PIEKUTOWSKI A J. Formation and description of debris cloud produced by hypervelocity impact: NASA CR-4707 [R]. NASA: Marshall Space Flight Center, 1996.
|
[15] |
HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056.
|
[16] |
HE Q G, CHEN X W. Simulation method of debris cloud from fiber-reinforced composite shield under hypervelocity impact [J]. Acta Astronautica, 2023, 204: 402–417. DOI: 10.1016/j.actaastro.2023.01.008.
|
[17] |
YIN X, LI Q H, CHEN B K, et al. An improved calibration of Karagozian & Case concrete/cementitious model for strain-hardening fibre-reinforced cementitious composites under explosion and penetration loadings [J]. Cement and Concrete Composites, 2023, 137: 104911. DOI: 10.1016/j.cemconcomp.2022.104911.
|
[18] |
WU Y C, WU C T. Simulation of impact penetration and perforation of metal targets using the smoothed particle Galerkin method [J]. Journal of Engineering Mechanics, 2018, 144(8): 04018057. DOI: 10.1061/(ASCE)EM.1943-7889.0001470.
|
[19] |
陈刚, 陈小伟, 陈忠富, 等. A3钢钝头弹撞击45钢板破坏模式的数值分析 [J]. 爆炸与冲击, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
|
[20] |
SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers & Structures, 2005, 83(17/18): 1526–1535. DOI: 10.1016/j.compstruc.2004.11.026.
|
[21] |
WU C T, REN B. A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 291: 197–215. DOI: 10.1016/j.cma.2015.03.003.
|
[22] |
WU C T, BUI T Q, WU Y C, et al. Numerical and experimental validation of a particle Galerkin method for metal grinding simulation [J]. Computational Mechanics, 2018, 61(3): 365–383. DOI: 10.1007/s00466-017-1456-6.
|
[23] |
黄长强, 朱鹤松. 球形破片对靶板极限穿透速度公式的建立 [J]. 弹箭与制导学报, 1993, 13(2): 58–61.
|
[24] |
郭锐, 陈佑明, 杨贵涛, 等. 一种基于LS-DYNA的SPH算法破片识别方法: CN115099120A [P]. 2022-09-23.
GUO R, CHEN Y M, YANG G T, et al. SPH algorithm fragment identification method based on LS-DYNA: CN115099120A [P]. 2022-09-23.
|