Citation: | XU Peng, SHENG Mao, TIAN Kejun, TIAN Shouceng, HUANG Zhongwei, LI Gensheng. On formation mechanism of perforation channel during rock breaking by abrasive water jet[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0156 |
[1] |
李根生, 沈忠厚. 高压水射流理论及其在石油工程中应用研究进展 [J]. 石油勘探与开发, 2005, 32(1): 96–99. DOI: 10.3321/j.issn:1000-0747.2005.01.026.
LI G S, SHEN Z H. Advances in researches and applications of water jet theory in petroleum engineering [J]. Petroleum Exploration and Development, 2005, 32(1): 96–99. DOI: 10.3321/j.issn:1000-0747.2005.01.026.
|
[2] |
黄中伟, 李根生, 唐志军, 等. 水力喷射侧钻径向微小井眼技术 [J]. 石油钻探技术, 2013, 41(4): 37–41. DOI: 10.3969/j.issn.1001-0890.2013.04.009.
HUANG Z W, LI G S, TANG Z J, et al. Technology of hydra-jet sidetracking of horizontal micro-radial laterals [J]. Petroleum Drilling Techniques, 2013, 41(4): 37–41. DOI: 10.3969/j.issn.1001-0890.2013.04.009.
|
[3] |
田守嶒, 李根生, 黄中伟, 等. 水力喷射压裂机理与技术研究进展 [J]. 石油钻采工艺, 2008, 30(1): 58–62. DOI: 10.3969/j.issn.1000-7393.2008.01.016.
TIAN S Z, LI G S, HUANG Z W, et al. Research on hydrajet fracturing mechanisms and technologies [J]. Oil Drilling & Production Technology, 2008, 30(1): 58–62. DOI: 10.3969/j.issn.1000-7393.2008.01.016.
|
[4] |
黄中伟, 李根生. 水力射孔参数对起裂压力影响的实验研究 [J]. 中国石油大学学报(自然科学版), 2007, 31(6): 48–50, 54. DOI: 10.3321/j.issn:1000-5870.2007.06.011.
HUANG Z W, LI G S. Experimental study on effects of hydrau-perforation parameters on initial fracturing pressure [J]. Journal of China University of Petroleum, 2007, 31(6): 48–50. DOI: 10.3321/j.issn:1000-5870.2007.06.011.
|
[5] |
LI H, HUANG Z W, LI J B, et al. Effect of nozzle structure on rock drilling performances of abrasive waterjet [C]//57th U. S. Rock Mechanics/Geomechanics Symposium. Atlanta: ARMA, 2023: ARMA-2023-0252.
|
[6] |
XUE Y Z, SI H, XU D Y, et al. Experiments on the microscopic damage of coal induced by pure water jets and abrasive water jets [J]. Powder Technology, 2018, 332: 139–149. DOI: 10.1016/j.powtec.2018.03.051.
|
[7] |
SURJAATMADJA J B, BAILEY A, SIERRA S. HydraJet testing under deep well conditions defines new requirements for hard-rock perforating [C]//SPE Rocky Mountain Petroleum Technology Conference. Denver: SPE, 2009: SPE-122817-MS. DOI: 10.2118/122817-MS.
|
[8] |
EAST L, ROSATO J, FARABEE M, et al. Packerless multistage fracture-stimulation method using CT perforating and annular path pumping [C]//SPE Annual Technical Conference and Exhibition. Dallas: SPE, 2005: SPE-96732-MS. DOI: 10.2118/96732-MS.
|
[9] |
李根生, 牛继磊, 刘泽凯, 等. 水力喷砂射孔机理实验研究 [J]. 石油大学学报(自然科学版), 2002, 26(2): 31–34. DOI: 10.3321/j.issn:1000-5870.2002.02.009.
LI G S, NIU J L, LIU Z K, et al. Experimental study on mechanisms of hydraulic sand blasting perforation for improvement of oil production [J]. Journal of China University of Petroleum (Edition of Natural Science), 2002, 26(2): 31–34. DOI: 10.3321/j.issn:1000-5870.2002.02.009.
|
[10] |
NAKHWA A D, LOVING S W, FERGUSON A, et al. Oriented perforating using abrasive fluids through coiled tubing [C]//SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. The Woodlands: SPE, 2007: SPE-107061-MS. DOI: 10.2118/107061-MS.
|
[11] |
李宪文, 赵振峰, 付钢旦, 等. 水力喷砂射孔孔道形态研究 [J]. 石油钻采工艺, 2012, 34(2): 55–58. DOI: 10.3969/j.issn.1000-7393.2012.02.015.
LI X W, ZHAO Z F, FU G D, et al. Research on channel pattern of hydraulic sand blasting perforation [J]. Oil Drilling & Production Technology, 2012, 34(2): 55–58. DOI: 10.3969/j.issn.1000-7393.2012.02.015.
|
[12] |
汤积仁, 卢义玉, 孙惠娟, 等. 基于CT方法的磨料射流冲蚀损伤岩石特性研究 [J]. 岩石力学与工程学报, 2016, 35(2): 297–302. DOI: 10.13722/j.cnki.jrme.2015.0881.
TANG J R, LU Y Y, SUN H J, et al. Study of erosion and damage characteristics of rock by abrasive water jet using CT [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 297–302. DOI: 10.13722/j.cnki.jrme.2015.0881.
|
[13] |
HUANG F, ZHAO Z Q, LI D, et al. Investigation of the breaking manifestations of bedded shale impacted by a high-pressure abrasive water jet [J]. Powder Technology, 2022, 397: 117021. DOI: 10.1016/j.powtec.2021.11.065.
|
[14] |
LI Z T, GE Z L, ZHOU Z, et al. Micro-failure behaviors of mineral crystals in reservoir rocks impacted by abrasive water jet [J]. Geoenergy Science and Engineering, 2024, 241: 213170. DOI: 10.1016/j.geoen.2024.213170.
|
[15] |
MI J Y, TANG J R, LIU W C, et al. Investigation of fracturing in heterogeneous rocks with cracks under abrasive water jet impact using pixel method [J]. Powder Technology, 2024, 443: 119900. DOI: 10.1016/j.powtec.2024.119900.
|
[16] |
SHANGGUAN J M, GE Z L, ZHOU Z, et al. Damage and fracture characteristics of thermal-treated granite subjected to ultra-high pressure jet [J]. Geoenergy Science and Engineering, 2024, 241: 213174. DOI: 10.1016/j.geoen.2024.213174.
|
[17] |
KAYA S, AYDIN G, KARAKURT I. An experimental study on the cutting depth produced by abrasive waterjet: how do abrasive and rock properties affect the cutting process? [J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(9): 4811–4823. DOI: 10.1007/s00170-023-11053-5.
|
[18] |
牛继磊, 李根生, 宋剑, 等. 水力喷砂射孔参数实验研究 [J]. 石油钻探技术, 2003, 31(2): 14–16. DOI: 10.3969/j.issn.1001-0890.2003.02.006.
NIU J L, LI G S, SONG J, et al. An experimental study on abrasive water jet perforation parameters [J]. Petroleum Drilling Techniques, 2003, 31(2): 14–16. DOI: 10.3969/j.issn.1001-0890.2003.02.006.
|
[19] |
QU H, TANG S M, SHENG M, et al. Experimental investigation of the damage characteristics and breaking process of shale by abrasive waterjet impact [J]. Journal of Petroleum Science and Engineering, 2022, 211: 110165. DOI: 10.1016/j.petrol.2022.110165.
|
[20] |
QU H, WU X G, LIU Y, et al. Effect of shale mineralogy characteristics on the perforation performance and particle fragmentation of abrasive waterjet [J]. Powder Technology, 2020, 367: 427–442. DOI: 10.1016/j.powtec.2020.03.068.
|
[21] |
CAI C, WANG X C, YUAN X H, et al. Experimental investigation on perforation of shale with ultra-high pressure abrasive water jet: shape, mechanism and sensitivity [J]. Journal of Natural Gas Science and Engineering, 2019, 67: 196–213. DOI: 10.1016/j.jngse.2019.05.002.
|
[22] |
LI Z T, GE Z L, ZHOU Z, et al. Numerical simulation and experimental verification of heterogeneous granite impacted by abrasive water jet based on SPH-FEM coupling algorithm [J]. Powder Technology, 2023, 416: 118233. DOI: 10.1016/j.powtec.2023.118233.
|
[23] |
XUE Y Z, SI H, CHEN G H. The fragmentation mechanism of coal impacted by water jets and abrasive jets [J]. Powder Technology, 2020, 361: 849–859. DOI: 10.1016/j.powtec.2019.11.018.
|
[24] |
薛胜雄. 高压水射流技术与应用 [J]. 中国安全科学学报, 1999, 9(S1): 92–92. DOI: 10.3969/j.issn.1003-3033.1999.z1.028.
XUE S X. High pressure water jet technology and application [J]. China Safety Science Journal, 1999, 9(S1): 92–92. DOI: 10.3969/j.issn.1003-3033.1999.z1.028.
|
[25] |
薛永志. 高压水射流冲击下煤岩损伤诱导机制及分布特性研究 [D]. 重庆: 重庆大学, 2018.
XUE Y Z. Study on the inducement and distribution of damage in coal impacted by high pressure water jets [D]. Chongqing: Chongqing University, 2018.
|
[26] |
VAN GIJTENBEEK K A, SURJAATMADJA J B, HEITMAN C. Unique hydrajet tool provides cost savings and improved performance in placing many perforations and proppant fractures in horizontal wellbores [C]//Tight Gas Technology Symposium. San Antonio: SPE, 2010: SPE-130255-MS. DOI: 10.2118/130255-MS.
|
[27] |
STOCKHAUSEN H W, GARCÍA SANCHEZ D G, LUONGO S A, et al. In-depth evaluation of deep-rock hydrajet results shows unique jetted rock surface characteristics [C]//SPE Europec/EAGE Annual Conference. Copenhagen: Society of Petroleum Engineers, 2012. DOI: 10.2118/153333-MS.
|