• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
XU Peng, SHENG Mao, TIAN Kejun, TIAN Shouceng, HUANG Zhongwei, LI Gensheng. On formation mechanism of perforation channel during rock breaking by abrasive water jet[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0156
Citation: XU Peng, SHENG Mao, TIAN Kejun, TIAN Shouceng, HUANG Zhongwei, LI Gensheng. On formation mechanism of perforation channel during rock breaking by abrasive water jet[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0156

On formation mechanism of perforation channel during rock breaking by abrasive water jet

doi: 10.11883/bzycj-2024-0156
  • Received Date: 2024-05-25
  • Rev Recd Date: 2025-03-12
  • Available Online: 2025-03-17
  • Abrasive water jet (AWJ) perforation is an effective mean for stimulation in oil and gas wells. However, the mechanism of perforation formation and the regulation of its parameter remain poorly understood. This study investigates the variation in hole shape during AWJ perforation through a series of experimental designs and analyses. By analyzing the variation in perforation shape with injection time, the rock-breaking damage caused by AWJ and the flow characteristics in the perforation were quantitatively characterized. The results show that the process of perforation formation is governed by the coupling of three physical effects. The inflow increases the hole depth by vertically impacting the hole tip, while the backflow enlarges the hole diameter by eroding the hole wall. As the fluid mechanical energy dissipates along the path, the evolution of the perforation slows down during the later perforation period. Because the rock breaking ability of inflow is stronger than that of backflow, the ratio of hole depth to hole diameter of AWJ perforation increases with the increase of injection time. Specifically, when the injection time ranges from 5 s to 300 s, the ratio increases from 7 to 28. The rock breaking ability of the backflow decreases from the tip to the orifice, whereas the duration of the backflow’s action on the hole wall increases in the same direction. Under the combined influence of rock breaking ability and rock breaking time, the hole evolves from a conical shape to a spindle shape, and the degree of spindle increases. With the increase of injection time and hole depth, the fluid mechanical energy loss becomes more severe. The change rate of hole depth decreased to 11.3% and the change rate of hole diameter decreased to 4.3%. The evolution of the AWJ perforation became slow.
  • loading
  • [1]
    李根生, 沈忠厚. 高压水射流理论及其在石油工程中应用研究进展 [J]. 石油勘探与开发, 2005, 32(1): 96–99. DOI: 10.3321/j.issn:1000-0747.2005.01.026.

    LI G S, SHEN Z H. Advances in researches and applications of water jet theory in petroleum engineering [J]. Petroleum Exploration and Development, 2005, 32(1): 96–99. DOI: 10.3321/j.issn:1000-0747.2005.01.026.
    [2]
    黄中伟, 李根生, 唐志军, 等. 水力喷射侧钻径向微小井眼技术 [J]. 石油钻探技术, 2013, 41(4): 37–41. DOI: 10.3969/j.issn.1001-0890.2013.04.009.

    HUANG Z W, LI G S, TANG Z J, et al. Technology of hydra-jet sidetracking of horizontal micro-radial laterals [J]. Petroleum Drilling Techniques, 2013, 41(4): 37–41. DOI: 10.3969/j.issn.1001-0890.2013.04.009.
    [3]
    田守嶒, 李根生, 黄中伟, 等. 水力喷射压裂机理与技术研究进展 [J]. 石油钻采工艺, 2008, 30(1): 58–62. DOI: 10.3969/j.issn.1000-7393.2008.01.016.

    TIAN S Z, LI G S, HUANG Z W, et al. Research on hydrajet fracturing mechanisms and technologies [J]. Oil Drilling & Production Technology, 2008, 30(1): 58–62. DOI: 10.3969/j.issn.1000-7393.2008.01.016.
    [4]
    黄中伟, 李根生. 水力射孔参数对起裂压力影响的实验研究 [J]. 中国石油大学学报(自然科学版), 2007, 31(6): 48–50, 54. DOI: 10.3321/j.issn:1000-5870.2007.06.011.

    HUANG Z W, LI G S. Experimental study on effects of hydrau-perforation parameters on initial fracturing pressure [J]. Journal of China University of Petroleum, 2007, 31(6): 48–50. DOI: 10.3321/j.issn:1000-5870.2007.06.011.
    [5]
    LI H, HUANG Z W, LI J B, et al. Effect of nozzle structure on rock drilling performances of abrasive waterjet [C]//57th U. S. Rock Mechanics/Geomechanics Symposium. Atlanta: ARMA, 2023: ARMA-2023-0252.
    [6]
    XUE Y Z, SI H, XU D Y, et al. Experiments on the microscopic damage of coal induced by pure water jets and abrasive water jets [J]. Powder Technology, 2018, 332: 139–149. DOI: 10.1016/j.powtec.2018.03.051.
    [7]
    SURJAATMADJA J B, BAILEY A, SIERRA S. HydraJet testing under deep well conditions defines new requirements for hard-rock perforating [C]//SPE Rocky Mountain Petroleum Technology Conference. Denver: SPE, 2009: SPE-122817-MS. DOI: 10.2118/122817-MS.
    [8]
    EAST L, ROSATO J, FARABEE M, et al. Packerless multistage fracture-stimulation method using CT perforating and annular path pumping [C]//SPE Annual Technical Conference and Exhibition. Dallas: SPE, 2005: SPE-96732-MS. DOI: 10.2118/96732-MS.
    [9]
    李根生, 牛继磊, 刘泽凯, 等. 水力喷砂射孔机理实验研究 [J]. 石油大学学报(自然科学版), 2002, 26(2): 31–34. DOI: 10.3321/j.issn:1000-5870.2002.02.009.

    LI G S, NIU J L, LIU Z K, et al. Experimental study on mechanisms of hydraulic sand blasting perforation for improvement of oil production [J]. Journal of China University of Petroleum (Edition of Natural Science), 2002, 26(2): 31–34. DOI: 10.3321/j.issn:1000-5870.2002.02.009.
    [10]
    NAKHWA A D, LOVING S W, FERGUSON A, et al. Oriented perforating using abrasive fluids through coiled tubing [C]//SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. The Woodlands: SPE, 2007: SPE-107061-MS. DOI: 10.2118/107061-MS.
    [11]
    李宪文, 赵振峰, 付钢旦, 等. 水力喷砂射孔孔道形态研究 [J]. 石油钻采工艺, 2012, 34(2): 55–58. DOI: 10.3969/j.issn.1000-7393.2012.02.015.

    LI X W, ZHAO Z F, FU G D, et al. Research on channel pattern of hydraulic sand blasting perforation [J]. Oil Drilling & Production Technology, 2012, 34(2): 55–58. DOI: 10.3969/j.issn.1000-7393.2012.02.015.
    [12]
    汤积仁, 卢义玉, 孙惠娟, 等. 基于CT方法的磨料射流冲蚀损伤岩石特性研究 [J]. 岩石力学与工程学报, 2016, 35(2): 297–302. DOI: 10.13722/j.cnki.jrme.2015.0881.

    TANG J R, LU Y Y, SUN H J, et al. Study of erosion and damage characteristics of rock by abrasive water jet using CT [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 297–302. DOI: 10.13722/j.cnki.jrme.2015.0881.
    [13]
    HUANG F, ZHAO Z Q, LI D, et al. Investigation of the breaking manifestations of bedded shale impacted by a high-pressure abrasive water jet [J]. Powder Technology, 2022, 397: 117021. DOI: 10.1016/j.powtec.2021.11.065.
    [14]
    LI Z T, GE Z L, ZHOU Z, et al. Micro-failure behaviors of mineral crystals in reservoir rocks impacted by abrasive water jet [J]. Geoenergy Science and Engineering, 2024, 241: 213170. DOI: 10.1016/j.geoen.2024.213170.
    [15]
    MI J Y, TANG J R, LIU W C, et al. Investigation of fracturing in heterogeneous rocks with cracks under abrasive water jet impact using pixel method [J]. Powder Technology, 2024, 443: 119900. DOI: 10.1016/j.powtec.2024.119900.
    [16]
    SHANGGUAN J M, GE Z L, ZHOU Z, et al. Damage and fracture characteristics of thermal-treated granite subjected to ultra-high pressure jet [J]. Geoenergy Science and Engineering, 2024, 241: 213174. DOI: 10.1016/j.geoen.2024.213174.
    [17]
    KAYA S, AYDIN G, KARAKURT I. An experimental study on the cutting depth produced by abrasive waterjet: how do abrasive and rock properties affect the cutting process? [J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(9): 4811–4823. DOI: 10.1007/s00170-023-11053-5.
    [18]
    牛继磊, 李根生, 宋剑, 等. 水力喷砂射孔参数实验研究 [J]. 石油钻探技术, 2003, 31(2): 14–16. DOI: 10.3969/j.issn.1001-0890.2003.02.006.

    NIU J L, LI G S, SONG J, et al. An experimental study on abrasive water jet perforation parameters [J]. Petroleum Drilling Techniques, 2003, 31(2): 14–16. DOI: 10.3969/j.issn.1001-0890.2003.02.006.
    [19]
    QU H, TANG S M, SHENG M, et al. Experimental investigation of the damage characteristics and breaking process of shale by abrasive waterjet impact [J]. Journal of Petroleum Science and Engineering, 2022, 211: 110165. DOI: 10.1016/j.petrol.2022.110165.
    [20]
    QU H, WU X G, LIU Y, et al. Effect of shale mineralogy characteristics on the perforation performance and particle fragmentation of abrasive waterjet [J]. Powder Technology, 2020, 367: 427–442. DOI: 10.1016/j.powtec.2020.03.068.
    [21]
    CAI C, WANG X C, YUAN X H, et al. Experimental investigation on perforation of shale with ultra-high pressure abrasive water jet: shape, mechanism and sensitivity [J]. Journal of Natural Gas Science and Engineering, 2019, 67: 196–213. DOI: 10.1016/j.jngse.2019.05.002.
    [22]
    LI Z T, GE Z L, ZHOU Z, et al. Numerical simulation and experimental verification of heterogeneous granite impacted by abrasive water jet based on SPH-FEM coupling algorithm [J]. Powder Technology, 2023, 416: 118233. DOI: 10.1016/j.powtec.2023.118233.
    [23]
    XUE Y Z, SI H, CHEN G H. The fragmentation mechanism of coal impacted by water jets and abrasive jets [J]. Powder Technology, 2020, 361: 849–859. DOI: 10.1016/j.powtec.2019.11.018.
    [24]
    薛胜雄. 高压水射流技术与应用 [J]. 中国安全科学学报, 1999, 9(S1): 92–92. DOI: 10.3969/j.issn.1003-3033.1999.z1.028.

    XUE S X. High pressure water jet technology and application [J]. China Safety Science Journal, 1999, 9(S1): 92–92. DOI: 10.3969/j.issn.1003-3033.1999.z1.028.
    [25]
    薛永志. 高压水射流冲击下煤岩损伤诱导机制及分布特性研究 [D]. 重庆: 重庆大学, 2018.

    XUE Y Z. Study on the inducement and distribution of damage in coal impacted by high pressure water jets [D]. Chongqing: Chongqing University, 2018.
    [26]
    VAN GIJTENBEEK K A, SURJAATMADJA J B, HEITMAN C. Unique hydrajet tool provides cost savings and improved performance in placing many perforations and proppant fractures in horizontal wellbores [C]//Tight Gas Technology Symposium. San Antonio: SPE, 2010: SPE-130255-MS. DOI: 10.2118/130255-MS.
    [27]
    STOCKHAUSEN H W, GARCÍA SANCHEZ D G, LUONGO S A, et al. In-depth evaluation of deep-rock hydrajet results shows unique jetted rock surface characteristics [C]//SPE Europec/EAGE Annual Conference. Copenhagen: Society of Petroleum Engineers, 2012. DOI: 10.2118/153333-MS.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (94) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return